Adsorption Kinetic Properties of As(Ⅲ)on Synthetic Nano Fe-Mn Binary Oxides  被引量:2

Adsorption Kinetic Properties of As(Ⅲ) on Synthetic Nano Fe-Mn Binary Oxides

在线阅读下载全文

作  者:Mei Yu Yanxin Wang Shuqiong Kong Evalde Mulindankaka Yuan Fang Ya Wu 

机构地区:[1]School of Environmental Studies,State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences,Wuhan 430074,China [2]Central-South Architectural Design Institute Corporation Limited,Wuhan 430074,China

出  处:《Journal of Earth Science》2016年第4期699-706,共8页地球科学学刊(英文版)

基  金:supported by the National Natural Science Foundation of China(No.41120124003);the Ministry of Science and Technology of China(No.2012AA062602);the 111 project and Priority Development Projects of SRFDP of the Ministry of Education of China

摘  要:The adsorptive removal of arsenic by synthetically-prepared nano Fe-Mn binary oxides(FM) was investigated. A novel method using potassium permanganate and ferric chloride as raw materials was used to synthesise FM. The molar ratio of Fe and Mn in the synthetic Fe-Mn binary oxides was 4 : 3. The FM-1 and FM-2(prepared at different activation temperatures) having high specific surface areas(358.87 and 128.58 m^2/g, respectively) were amorphous and of nano particle types. The amount of arsenic adsorbed on FM-1 was higher than that adsorbed on FM-2 particles. After adsorption by FM-1, residual arsenic concentration decreased to less than 10 μg/L. The adsorption kinetics data were analyzed using different kinetic models including pseudo first-order model, pseudo second-order model, Elovich model and intraparticle diffusion model. Pseudo second-order kinetic model was the most appropriate model to describe the adsorption kinetics. The adsorption percentage of As(Ⅲ) increased in the p H range of 2–3 while it decreased with the increase of pH( 3〈pH〈10). The effects of coexisting anions on As(Ⅲ) removal using FM-1 and FM-2 were also studied and the order of the effects is as follows: NO_3^-, Cl-, F-〈SO_4^(2-), HCO_3-〈H_2PO_4^-, indicating that H_2PO_4^- is the major competitor with As(Ⅲ) for adsorptive sites on the surface of the adsorbents. The higher adsorption capacity of FM-1 makes it potentially attractive adsorbent for the removal of As(Ⅲ) from groundwater.The adsorptive removal of arsenic by synthetically-prepared nano Fe-Mn binary oxides(FM) was investigated. A novel method using potassium permanganate and ferric chloride as raw materials was used to synthesise FM. The molar ratio of Fe and Mn in the synthetic Fe-Mn binary oxides was 4 : 3. The FM-1 and FM-2(prepared at different activation temperatures) having high specific surface areas(358.87 and 128.58 m^2/g, respectively) were amorphous and of nano particle types. The amount of arsenic adsorbed on FM-1 was higher than that adsorbed on FM-2 particles. After adsorption by FM-1, residual arsenic concentration decreased to less than 10 μg/L. The adsorption kinetics data were analyzed using different kinetic models including pseudo first-order model, pseudo second-order model, Elovich model and intraparticle diffusion model. Pseudo second-order kinetic model was the most appropriate model to describe the adsorption kinetics. The adsorption percentage of As(Ⅲ) increased in the p H range of 2–3 while it decreased with the increase of pH( 3〈pH〈10). The effects of coexisting anions on As(Ⅲ) removal using FM-1 and FM-2 were also studied and the order of the effects is as follows: NO_3^-, Cl-, F-〈SO_4^(2-), HCO_3-〈H_2PO_4^-, indicating that H_2PO_4^- is the major competitor with As(Ⅲ) for adsorptive sites on the surface of the adsorbents. The higher adsorption capacity of FM-1 makes it potentially attractive adsorbent for the removal of As(Ⅲ) from groundwater.

关 键 词:ARSENITE ADSORPTION nano Fe-Mn binary oxide KINETICS pH. 

分 类 号:O647.3[理学—物理化学] X523[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象