检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学地球科学与工程学院,南京210098 [2]河南省南阳水文水资源勘测局,南阳474500
出 处:《国土资源遥感》2016年第3期86-90,共5页Remote Sensing for Land & Resources
基 金:中国科学院战略性先导科技专项(编号:XDA05050106);生态十年专项项目"复杂背景下地物信息提取规则集构建"(编号:STSN-01-05)共同资助
摘 要:光谱特征的选择对于湿地植被的识别精度和效率有直接的影响作用。以美国舍曼(Sherman)岛水域为研究区,基于Hy Map航空高光谱遥感影像数据,分析湿地植被的一阶微分光谱和光谱吸收特征,利用逐步判别分析法筛选识别精度较好的光谱特征参数参与C4.5决策树分类。结果表明:4种湿地植被的一阶导数光谱特征差异较小,吸收特征差异性相对较大;基于一阶微分光谱特征和光谱吸收特征利用C4.5决策树进行分类,可以实现湿地植被在物种水平上的识别,并达到较好的分类精度。Certain spectral characteristics have a direct impact on accuracy and efficiency of identifying the wetland vegetation. In this paper, the authors mapped wetland vegetation with 3 m spatial resolution for HyMap image data from Sherman Island of California' s Sacramento - San Joaquin delta. The first - derivative spectral features and spectral absorption features of different species were analyzed by the method of stepwise discriminate analysis, and the spectral characteristic parameters with better classification accuracy were screened to identify species of wetland vegetation in C4.5 decision tree classifier. The results showed that the absorption features of four plants have larger differences than first - derivative spectral features. The results also showed that C4.5 decision tree classifier in combination with the first -derivative spectral characteristics and spectral absorption characteristics could be effective in distinguishing wetland vegetation and allowing for species -level detection.
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.51.45