Soil Respiration, Microbial Biomass C and N Availability in a Sandy Soil Amended with Clay and Residue Mixtures  被引量:1

Soil Respiration, Microbial Biomass C and N Availability in a Sandy Soil Amended with Clay and Residue Mixtures

在线阅读下载全文

作  者:Sharmistha PAL Petra MARSCHNER 

机构地区:[1]ICAR-Indian Institute of Soil and Water Conservation, Research Centre [2]School of Agriculture, Food and Wine, The University of Adelaide

出  处:《Pedosphere》2016年第5期643-651,共9页土壤圈(英文版)

基  金:supported by a postdoctoral award of Australian Department of Education and Training Endeavour to S. Pal

摘  要:Crop yields in sandy soils can be increased by addition of clay-rich soil, but little is known about the effect of clay addition on nutrient availability after addition of plant residues with different C/N ratios. A loamy sandy soil (7% clay) was amended with a clay-rich subsoil (73% clay) at low to high rates to achieve soil mixtures of 12%, 22%, and 30% clay, as compared to a control (sandy soil alone) with no clay addition. The sandy-clay soil mixtures were amended with finely ground plant residues at 10 g kg-l: mature wheat (Triticum aestivum L.) straw with a C/N ratio of 68, mature faba bean (Vicia faba L.) straw with a C/N ratio of 39, or their mixtures with different proportions (0% 100%, weight percentage) of each straw. Soil respiration was measured over days 0-45 and microbial biomass C (MBC), available N, and pH on days 0, 15, 30, and 45. Cumulative respiration was not clearly related to the C/N ratio of the residues or their mixtures, but C use efficiency (cumulative respiration per unit of MBC on day 15) was greater with faba bean than with wheat and the differences among the residue mixtures were smaller at the highest clay addition rate. The MBC concentration was lowest in sole wheat and higher in residue mixtures with 50% of wheat and faba bean in the mixture or more faba bean. Soil N availability and soil pH were lower for the soil mixtures of 22% and 30% clay compared to the sandy soil alone. It could be concluded that soil cumulative respiration and MBC concentration were mainly influenced by residue addition, whereas available N and pH were influenced by clay addition to the sandy soil studied.Crop yields in sandy soils can be increased by addition of clay-rich soil, but little is known about the effect of clay addition on nutrient availability after addition of plant residues with different C/N ratios. A loamy sandy soil(7% clay) was amended with a clay-rich subsoil(73% clay) at low to high rates to achieve soil mixtures of 12%, 22%, and 30% clay, as compared to a control(sandy soil alone) with no clay addition. The sandy-clay soil mixtures were amended with finely ground plant residues at 10 g kg^(-1): mature wheat(Triticum aestivum L.) straw with a C/N ratio of 68, mature faba bean(Vicia faba L.) straw with a C/N ratio of 39, or their mixtures with different proportions(0%–100%, weight percentage) of each straw. Soil respiration was measured over days 0–45 and microbial biomass C(MBC), available N, and p H on days 0, 15, 30, and 45. Cumulative respiration was not clearly related to the C/N ratio of the residues or their mixtures, but C use efficiency(cumulative respiration per unit of MBC on day 15) was greater with faba bean than with wheat and the differences among the residue mixtures were smaller at the highest clay addition rate. The MBC concentration was lowest in sole wheat and higher in residue mixtures with 50% of wheat and faba bean in the mixture or more faba bean. Soil N availability and soil p H were lower for the soil mixtures of 22% and 30% clay compared to the sandy soil alone. It could be concluded that soil cumulative respiration and MBC concentration were mainly influenced by residue addition, whereas available N and p H were influenced by clay addition to the sandy soil studied.

关 键 词:available N C use efficiency C/N ratio cumulative respiration nutrient availability pH plant residues 

分 类 号:S154[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象