机构地区:[1]扬州大学农业部长江流域稻作技术创新中心/江苏省作物遗传生理重点实验室,江苏扬州225009 [2]浙江省宁波市农业科学院作物研究所,浙江宁波315101 [3]浙江省宁波市种子公司,浙江宁波315101 [4]浙江省宁波市鄞州区农业技术服务站,浙江宁波315100
出 处:《作物学报》2016年第9期1363-1373,共11页Acta Agronomica Sinica
基 金:国家公益性行业(农业)科研专项(201303102);农业部超级稻专项(02318802013231);宁波市重大科技项目(2013C11001);江苏省重点研发项目(BE2015340);扬州大学研究生创新培养计划项目(KYLX15_1371);扬州大学科技创新培育基金(2015CXJ042);基于模型与GIS的高邮市小麦精确管理和诊断调控技术的开发与示范推广(SXGC[2013]248)资助~~
摘 要:为探明甬优12超高产群体的氮素吸收与积累特征,2013—2014年,对高产(10.5~12.0 t hm–2)、更高产(12.0~13.5 t hm–2)、超高产(>13.5 t hm–2)3个产量群体的氮素吸收与积累特征等进行了系统比较研究。结果表明,与高产和更高产群体相比:(1)超高产群体拔节期植株含氮率较低,抽穗期和成熟期植株含氮率高于对照。超高产群体拔节期氮素吸收量较低,抽穗和成熟期氮素吸收量较高。(2)超高产群体播种至拔节期氮素积累量和积累比例低于对照;拔节至抽穗期、抽穗至成熟期植株氮素积累量和积累比例高于对照。播种至拔节期氮素积累量与产量呈极显著线性负相关,拔节至抽穗期、抽穗至成熟期植株氮素积累量与产量呈极显著线性正相关。(3)超高产群体抽穗期和成熟期茎鞘、叶片和穗部氮素吸收量较高,且花后茎鞘氮素转运量和穗部氮素积累量也较高。花后茎鞘氮素转运量与实产呈显著线性正相关;穗部氮素积累量与实产呈极显著线性正相关。(4)甬优12超高产群体氮素吸收利用参数为,籽粒生产率50.8 kg grain kg^(–1)、百千克籽粒吸氮量1.97 kg、氮肥偏生产力42.1 kg kg–1、氮收获指数0.552。本研究表明,与一般高产群体相比,甬优12超高产群体氮素吸收具有拔节前较低、拔节至抽穗期和抽穗至成熟期高的特点;促进花后茎鞘氮素转运量有利于提高水稻产量。甬优12超高产群体百千克籽粒吸氮量2.0 kg左右,其氮素利用效率较低,在其超高产栽培管理中应重视氮素的高效利用。In order to determine the absorption and accumulation of nitrogen(N) in super high yielding rice population of Yongyou 12, the field experiments were conducted with these populations of high yield(HY, 10.5–12.0 t ha–1), higher yield(HRY, 12.0–13.5 t ha–1), and super high yield(SHY, 13.5 t ha–1) in 2013 and 2014. Results indicated that compared with HRY and HY. SHY showed lower N content at jointing while higher N content at heading and maturity. SHY showed lower N accumulation at jointing while higher N accumulation at heading and maturity. N accumulation and accumulation rate from sowing to jointing of SHY was lower, while opposite trends were observed from jointing to heading and from heading to maturity for SHY. There existed a very significantly negative correlation between N accumulation from sowing to jointing and grain yield, while very significantly positive correlations were observed between N accumulation from sowing to jointing and from heading to maturity and grain yield. SHY showed higher N accumulation in leaf, stem, and panicle at heading and maturity, as well as N translocation from stem and N increase in panicle after heading. There existed a significantly positive correlation between N translocation from stem after heading and grain yield, while a very significantly positive correlation was observed between N increase in panicle after heading and grain yield. When values were averaged across two years, internal nutrient efficiency, N uptake in the panicle per hundred, partial factor productivity, and N harvest index of SHY were 50.8 kg grain kg–1, 1.97 kg, 42.1 kg kg–1, and 0.552, respectively. Our study indicated that SHY showed lower N accumulation before jointing, while higher N accumulation from jointing to heading, and from heading to maturity, when compared with check. Increasing N translocation from stem after heading was beneficial to improve grain yield. N uptake in the panicle per hundred of SHY was 2.0 kg, relatively low P use efficiency was observed in S
关 键 词:甬优12 超高产群体 氮素积累、分配与利用
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...