检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学计算机科学与技术学院,重庆400065 [2]重庆邮电大学软件工程学院,重庆400065
出 处:《计算机应用与软件》2016年第9期254-258,共5页Computer Applications and Software
基 金:国家自然科学基金项目(61171060);重庆市经信委软件精英人才培养与公共服务平台建设项目(渝经信投资[2011]167号);重庆市教委基金项目(渝教高[2010]48号)
摘 要:针对微博网络社区难以准确划分的问题,根据微博网络的特性,提出一种基于用户紧密度的微博网络社区发现算法。根据微博网络中用户间的交互度与共有邻居相似度来计算用户紧密度,并与传统的GN算法相结合对微博网络进行社区划分。通过对真实社会网络和微博模拟网络进行实验验证,实验结果表明,该算法可以有效地发现网络中的社区结构。Aiming at the problem of difficult in accurately partitioning the microblogging network community, based on the characteristics of microblogging network, this paper proposes a user closeness-based detection algorithm for microblogging network community. The algorithm computes user closeness based on interaction level between users and common neighbours similarity in microblogging network community, and combines with traditional GN algorithm to make community partition in microblogging network. Experimental verifications are conducted on real social network and simulated microblogging network, results show that the algorithm can effectively detect the community structure in networks.
关 键 词:社区发现 微博网络 GN算法 用户紧密度 共有邻居相似度
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117