检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南商学院,湖南长沙410205 [2]中南大学,湖南长沙410083
出 处:《科研管理》2016年第9期105-112,共8页Science Research Management
基 金:国家自然科学基金面上项目(环境规制与企业生态技术创新激励:基于央地分权视角的理论与实证研究;71573283;2015.1-2019.1);教育部人文社科基金项目(基于价值链协同的我国生态产业发展战略与路径研究;13YJC790173;2013.5-2016.4);湖南省社科基金项目(湖南生态产业发展的价值链协同战略与路径研究;15YBA232;2015.11-2017.12)
摘 要:在创新资源有限的前提下,企业选择低碳技术创新的必要条件是其收益大于其他类型的创新活动。本文在传统的A-J模型框架内,引入低碳技术创新的机会成本,系统分析了碳排放税、碳排放标准、减排补贴和碳排放许可四种环境政策工具对企业创新选择的影响。模型结果表明:每一种环境政策工具都存在一个最优水平,但其对企业低碳技术创新的激励效果和经济效益有所区别。通过对比分析发现,市场机制完善的环境政策工具更能促进企业选择低碳技术创新;而鼓励导向的环境政策工具更能促进企业创新活动的经济效益。本文研究结论可以为政府制定环境政策工具组合,提供理论指导。On the premise that there is limited innovation resources,the necessary condition for companies to select low carbon technology innovation is that its revenue is greater than that of other types of innovation activities. In this paper,the author introduced low carbon technology innovation opportunity cost into traditional A- J model,analyzed systematically the impacts of such four environmental policy instruments as carbon emission tax,carbon emission standards,emission reduction subsidies and carbon emissions permits on the choice of enterprise innovation. The model result shows that each environmental policy tool has an optimal level,but each tool has a different incentive effect and economic benefit of low carbon technology innovation. Through the comparative analysis,environmental policy tools in more advanced market mechanism have a better effect in promoting the enterprise to choose low carbon technology innovation,while encouraging- oriented environmental policy tools can promote the economic benefits of enterprise innovation activities. The results of this paper can provide a theoretical guidance for the government to develop environmental policy tools.
分 类 号:F062.2[经济管理—政治经济学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.230.234