检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093
出 处:《电子科技》2016年第9期4-6,135,共4页Electronic Science and Technology
基 金:国家自然科学基金资助项目(61170277);上海市教委科研创新重点基金资助项目(12zz137);上海市一流学科建设基金资助项目(S1201YLXK)
摘 要:针对车辆路径搜索对其计算质量和效率要求较高问题,且原始蚁群算法和标准粒子群算法均存在局部优先解、停滞以及收敛速度较慢等缺陷,提出一种融合改进的蚁群和粒子群路径搜索算法。在融合算法前期提高粒子群算法收敛速度,利用其进行粗搜索,后期利用改进的蚁群算法进行细搜索。通过仿真分析表明,融合后的改进算法在路径规划和计算效率上均有较大提升。The ant colony and particle swarm optimization have the disadvantages of local preferred solution, stagnation and low convergence speed. A fusion of improved ant colony and particle swarm algorithm is proposed to meet the high quality and efficiency requirements of vehicle routing search. , use the coarse search is used in the early stage, and the improved ant colony algorithm for the following fine search. Simulation shows that the improved algo- rithm significant improves the efficiency of path planning and calculation.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117