检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chen-Chen Sun De-Rong Shen Yue Kou Tie-Zheng Nie Ge Yu
机构地区:[1]School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
出 处:《Journal of Computer Science & Technology》2016年第5期1053-1068,共16页计算机科学技术学报(英文版)
基 金:This work is supported by the National Basic Research 973 Program of China under Grant No. 2012CB316201, the Fundamental Research Funds for the Central Universities of China under Grant No. N120816001, and the National Natural Science Foundation of China under Grant Nos. 61472070 and 61402213.
摘 要:This work proposes an unsupervised topological features based entity disambiguation solution. Most existing studies leverage semantic information to resolve ambiguous references. However, the semantic information is not always accessible because of privacy or is too expensive to access. We consider the problem in a setting that only relationships between references are available. A structure similarity algorithm via random walk with restarts is proposed to measure the similarity of references. The disambiguation is regarded as a clustering problem and a family of graph walk based clustering algorithms are brought to group ambiguous references. We evaluate our solution extensively on two real datasets and show its advantage over two state-of-the-art approaches in accuracy.This work proposes an unsupervised topological features based entity disambiguation solution. Most existing studies leverage semantic information to resolve ambiguous references. However, the semantic information is not always accessible because of privacy or is too expensive to access. We consider the problem in a setting that only relationships between references are available. A structure similarity algorithm via random walk with restarts is proposed to measure the similarity of references. The disambiguation is regarded as a clustering problem and a family of graph walk based clustering algorithms are brought to group ambiguous references. We evaluate our solution extensively on two real datasets and show its advantage over two state-of-the-art approaches in accuracy.
关 键 词:entity disambiguation topological feature CLUSTERING random walk with restarts
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15