检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张玉虎[1,2] 向柳[1,2] 孙庆[3] 陈秋华[3]
机构地区:[1]首都师范大学资源环境与旅游学院,北京100048 [2]水资源安全北京实验室,北京100048 [3]首都师范大学数学科学学院,北京100048
出 处:《地理科学》2016年第9期1437-1444,共8页Scientia Geographica Sinica
基 金:国家科技支撑计划项目(2013BAC10B01;2012BAC19B0305);北京市教委科研计划项目(KZ201410028030)资助~~
摘 要:根据季节径流量相关特性,利用标准径流指数(SRI),通过优选Copula函数和径流量分布函数,构建贝叶斯框架的Copula季节水文干旱预报模型,并对阿克苏河西大桥水文站进行实证分析。结果表明:1 Gamma、Lognormal、Normal、Gumbel、Exponential 5种分布函数中,Gamma、Gumbel能较好拟合夏、秋季径流量;2 Gumbel-Hougaard、Clayton、Frank 3种Copula函数中,Clayton能较好联结夏、秋季径流量分布函数;3构建模型预报表明,2001~2009年秋季发生干旱概率较低(24%~38%),以轻微、中度干旱为主,而2010年发生干旱的概率极高(95%),发生异常干旱的概率偏高(81%),与实际发生的干旱情况基本一致;4贝叶斯框架下构建的Copula模型能准确预报季节水文干旱发生,减少预报的不确定性,为特定区域干旱预报提供了一条新的途径。Forecasting of hydrological drought plays an important role in the decision-making process of water resources management.Bayesian networks provide an elegant tool to reflect the autocorrelation in the runoff record and develop the conditional probabilities,furnishing a framework for various types of probabilistic drought forecasting.This study presents a Bayesian probabilistic forecasting model based on best-fitted first-order copula functions.Standardized runoff index(SRI) is used to characterize the historical hydrological droughts and forecast probabilistic drought by season runoff correlations of a target season with the previous seasons in future.We used the Xidaqiao hydrological station in the Aksu River,sub-basin of the Trim River Basin of Xinjiang as a case,and apply the Bayesian probabilistic forecasting model to forecast the probability of autumn drought during the period 2000-2010 based on data from the previous summer,and testing the accuracy of the model.The results show that the probability of an autumn drought in the Aksu River Basin during2001-2009 was low(24%-38%),with mainly abnormal and moderate droughts,whereas drought was very likely to occur in 2010(95%),with the probability of occurrence of an exceptional drought being as high as 81%.The model is reliable and can forecast hydrological drought in the next season when current hydrological conditions are known.And the model can quantitatively express the uncertainty of hydrological drought and then improve its prediction accuracy.It does not require the linear assumption of normality and has a wide range of applications.The model provides an useful tool for uncertainty modeling through a probabilistic representation of model parameter uncertainty,developing conditional probabilities for given forecast variables,and returning the highest probable forecast along with an assessment of the uncertainty around that value.However,this study only selects the highest seasonal correlation as a condition,and further studies of hydrological dr
关 键 词:水文干旱 预报 贝叶斯框架 COPULA函数 阿克苏河
分 类 号:K903[历史地理—人文地理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68