基于模块度优化的标签传播社区发现算法  被引量:11

Community Detection for Label Propagation with Modularity Optimization

在线阅读下载全文

作  者:李磊[1] 倪林[1] 

机构地区:[1]中国科学技术大学电子工程与信息科学系,合肥230027

出  处:《计算机系统应用》2016年第9期212-215,共4页Computer Systems & Applications

摘  要:标签传播算法(LPA)是一种快速高效的社区发现算法,算法无需社区数量等先验信息,但存在大量随机性,稳定性较差.为了提高标签传播算法的稳定性,提出了一种改进的标签传播算法(LPAMP).该算法分为两个阶段,第一阶段以模块度贪婪为依据,进行节点粗聚类;第二阶段在粗聚类的基础上,进行节点标签传播.实验结果表明,所提算法降低了标签传播算法的随机性,增强了稳定性,并且提高了准确率.Label Propagation Algorithm(LPA) is a fast and efficient community detection algorithm and this algorithm does not need to know the prior information such as the number of communities. However, this algorithm has a large number of randomness, which leads to unstable results. In order to improve the stability of label propagation algorithm, we propose an improved label propagation algorithm(LPAMP). The algorithm is divided into two phases. In the first phase, vertices are clustered roughly by optimizing the modularity greedily; in the second phase, the labels propagate through the network based on the result of the first phase. Experimental results show that the proposed algorithm not only reduces the randomness of the label propagation algorithm, but also improves the stability and increases the accuracy.

关 键 词:标签传播 社区发现 模块度 贪婪 优化 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象