Molecular Weight Controllable Degradation of Laminaria japonica Polysaccharides and Its Antioxidant Properties  被引量:4

Molecular Weight Controllable Degradation of Laminaria japonica Polysaccharides and Its Antioxidant Properties

在线阅读下载全文

作  者:ZHA Shenghua ZHAO Qingsheng ZHAO Bing OUYANG Jie MO Jianling CHEN Jinjin CAO Lili ZHANG Hong 

机构地区:[1]Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China [2]Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China [3]College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, P. R. China [4]Beijing Tong Ren Tang Health Pharmaceutical Co., Ltd., Beijing 100085, P. R. China

出  处:《Journal of Ocean University of China》2016年第4期637-642,共6页中国海洋大学学报(英文版)

基  金:the financial support from the National Natural Science Foundation of China (No.21506220)

摘  要:In this study, molecular weight controllable degradation of algal Laminaria japonica polysaccharides(LPS) was investigated by ultrasound combined with hydrogen peroxide. Three main factors, i.e., ultrasonic power(A), ultrasonic time(B), and H_2O_2 concentration(C) were chosen for optimizing parameters by employing three-factors, three-levels BBD. The influence of degradation on structure change and antioxidant activities was also investigated. A second-order polynomial equation including molecular weight(Y) of Laminaria japonica polysaccharides and each variable parameter, i.e., ultrasonic power(A), ultrasonic time(B), and H_2O_2 concentration(C), was established: Y=20718.67-4273.13A-4000.38B-1438.75C+2333.25AB+1511.00AC+873.00BC+2838.29A^2 + 2490.79B^2+873.04C^2. The equation regression coefficient value(R^2 = 0.969) indicated that this equation was valid. The value of the adjusted determination coefficient(adjusted R^2 = 0.914) also confirmed that the model was highly significant. The results of selected experimental degradation conditions matched with the predicted value. FT-IR spectra revealed that the structures of LPS before and after degradation were not significantly changed. Antioxidant activities of LPS revealed that low Mws possessed stronger inhibitory than the original polysaccharides. The scavenging effects on superoxide radicals was the highest when IC50 of crude LPS was 4.92 mg mL^(-1) and IC50 of Mw 18.576 KDa was 1.02 mg mL^(-1), which was fourfold higher than initial polysaccharide.In this study, molecular weight controllable degradation of algal Laminaria japonica polysaccharides(LPS) was investigated by ultrasound combined with hydrogen peroxide. Three main factors, i.e., ultrasonic power(A), ultrasonic time(B), and H_2O_2 concentration(C) were chosen for optimizing parameters by employing three-factors, three-levels BBD. The influence of degradation on structure change and antioxidant activities was also investigated. A second-order polynomial equation including molecular weight(Y) of Laminaria japonica polysaccharides and each variable parameter, i.e., ultrasonic power(A), ultrasonic time(B), and H_2O_2 concentration(C), was established: Y=20718.67-4273.13A-4000.38B-1438.75C+2333.25AB+1511.00AC+873.00BC+2838.29A^2 + 2490.79B^2+873.04C^2. The equation regression coefficient value(R^2 = 0.969) indicated that this equation was valid. The value of the adjusted determination coefficient(adjusted R^2 = 0.914) also confirmed that the model was highly significant. The results of selected experimental degradation conditions matched with the predicted value. FT-IR spectra revealed that the structures of LPS before and after degradation were not significantly changed. Antioxidant activities of LPS revealed that low Mws possessed stronger inhibitory than the original polysaccharides. The scavenging effects on superoxide radicals was the highest when IC50 of crude LPS was 4.92 mg mL^(-1) and IC50 of Mw 18.576 KDa was 1.02 mg mL^(-1), which was fourfold higher than initial polysaccharide.

关 键 词:Laminaria superoxide scavenging ultrasonic controllable adjusted optimizing matched degraded viscosity 

分 类 号:Q946[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象