检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆旻皎
出 处:《水力发电学报》2016年第9期1-6,共6页Journal of Hydroelectric Engineering
摘 要:为了探讨新安江模型汇流参数中河网蓄水消退系数规律,本文从线性水库理论出发得到消退系数和蓄泄系数的关系,明确消退系数是反映流域特征的蓄泄系数和计算时段长度的函数。并在此基础上讨论了时段长度过长、时段内入流分布可能带来的不确定性。对于日降雨一径流分析很难求得的河网蓄水消退系数,本文提出了通过蓄泄系数参数规律来间接推求河网蓄水消退系数的新方法。以极简单的Simas公式为例探讨其地理因子的适用性,发现即使是这样简单的公式也可以得到较高的精度。面积在100~3000km2的13个流域的时消退系数的平均误差为0.005,标准偏差为0.022。有了这样的思路,我们可以借鉴地表水汇流特性研究工作的庞大知识积累,研究各种地理因子及水力因子的更有综合代表性组合条件下的河网蓄水消退系数。To synthesize recession coefficients in the Xinanjiang model, this paper presents a relationship of the coefficients versus the time interval and storage coefficient for linear reservoirs based on the linear reservoir theory, and discusses potential uncertainties due to longer time intervals and input variability within the intervals. For the recession coefficient of channel water, which is very difficult to calibrate in daily rainfall-runoff analysis, a new approach is adopted to replace its direct calibration by synthesizing the storage coefficients of linear reservoirs. Results show that the new approach is very successful in the estimation of the hourly recession coefficients of 13 small basins of areas in the range of 100 to 3000 square kilometers and has achieved their values with an average error of 0.005 and a standard deviation of 0.022. This approach allows a new way to synthesize the recession coefficients in the Xinanjiang model based on vast previous studies about fiver concentration.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229