应用改进无偏灰色模型预测油气田产量  被引量:7

Application of modified unbiased grey model to the prediction of oil and gas field production

在线阅读下载全文

作  者:黄全华[1] 付云辉[1] 陆云[1] 陈冲[1] 刘彤[1] Huang Quanhua Fu Yunhui Lu Yun Chen Chong Liu Tong(School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China)

机构地区:[1]西南石油大学石油与天然气工程学院,成都610500

出  处:《岩性油气藏》2016年第5期117-122,共6页Lithologic Reservoirs

基  金:国家重大科技专项"亚太及南美地区复杂油气田渗流机理及开发规律研究"(编号:2011ZX05030-005-06)资助

摘  要:无偏灰色模型不存在传统灰色模型固有的偏差,虽然在一定程度上提高了预测的准确性,但在实际应用中预测值与实际值相差较大,不能满足预测精度的要求。在研究传统模型优化方法的基础上,应用幂函数法和新陈代谢法优化无偏灰色模型,提出了改进无偏灰色模型。根据油田年产油量统计数据,分别建立了无偏灰色模型、幂函数-无偏灰色模型以及改进无偏灰色模型,并将这3种模型预测结果与实际产油量进行比较。结果表明,改进无偏灰色模型预测精度明显高于其他2种模型,平均相对误差仅为5.53%,小误差概率大于0.95,均方差比为0.34,说明预测值与实际产油量拟合度高,能够达到预测精度的要求,可用于油气田产量预测。There is no inherent deviation in unbiased grey model which can improve the prediction accuracy to a certain extent. However, if use unbiased grey model directly in the actual application, the predicted results can not meet the requirements of prediction accuracy. The power function method and metabolism method were applied to improve the unbiased grey model, and a modified unbiased grey model was proposed. Based on the data of annual oil production of oilfield, unbiased grey model, power function-unbiased grey model and modified unbiased grey model were established respectively, and then the predicted results by these models were compare with actual oil production. The results show that the modified unbiased grey model has higher prediction accuracy than the other two models. The average relative error is only 5.53%, the small error probability is greater than 0.95, and the mean square deviation ratio is 0.34. The results predicted by the modified unbiased grey model have high fitting degree with actual oil production, so this model can be used to predict oil and gas field production.

关 键 词:灰色系统 无偏优化模型 幂函数法 新陈代谢法 产油量预测 

分 类 号:TE319[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象