检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东交通大学电气与电子工程学院,江西南昌330013
出 处:《电力系统保护与控制》2016年第18期41-45,共5页Power System Protection and Control
摘 要:以往对智能小区居民用电行为聚类分析时,存在着负荷特征选择与权重计算描述不足的问题。为了提高居民用电行为聚类分析的准确率,降低聚类分析运行时间,提出一种基于Relief F算法建立的以峰时耗电率、日负荷峰值时刻、谷时耗电率、日负荷周期数、日最小负荷率等特征的数据模型。该模型可以对海量居民用电行为数据进行处理,并通过k-means算法对其进行聚类分析。实验数据来源为已建成的智能小区,结果准确率达94.61%,证明了基于Relief F算法建立的特征数据模型在居民用电行为类分析中是有效的。In order to solve the described insufficient problem of load feature selection and weight calculation in the past clustering analysis of residential electricity behavior, enhance the accuracy of clustering analysis in residential electricity behavior and reduce the time of clustering analysis operation, a data model based on Relief F algorithm is proposed. The data model is characterized by electricity consumption rate during peak hour, the peak load time, the valley of the power, daily load cycles, the minimum load rate feature, and so on. The massive data of residential electricity behavior can be processed by the model, and clustering analysis of the model is made through k-means algorithm. Experimental data is obtained from a built-up smart community, and the result accuracy reaches to 94.61%, showing the proposed model based on Relief F algorithm in clustering analysis of residential electricity behavior is effective.
分 类 号:TM714[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.99.121