机构地区:[1]School of Mechanical Engineering,Southeast University [2]State Key Laboratory of Robotics and System,Harbin Institute of Technology
出 处:《Journal of Hydrodynamics》2016年第4期637-647,共11页水动力学研究与进展B辑(英文版)
基 金:supported by the National Natural Science Foun-dation of China(Grant Nos.51205060,51405080)
摘 要:This paper studies the effect of the head swing motion on the fishlike robot swimming performance numerically. Two critical parameters are employed in describing the kinematics of the head swing: the leading edge amplitude of the head and the trailing edge amplitude of the head. Three-dimensional Navier-Stokes equations are used to compute the viscous flow over the robot. The user-defined functions and the dynamic mesh technology are used to simulate the fishlike swimming with the head swing motion The results reveal that it is of great benefit for the fish to improve the thrust and also the propulsive efficiency by increasing the two amplitudes properly. Superior hydrodynamic performance can be achieved at the leading edge amplitudes of 0.05L ( L is the fish length) and the trailing edge amplitudes of 0.08L. The unsteady flow fields clearly indicate the evolution process of the flow structures along the swimming fish. Thrust-indicative flow structures with two pairs of pressure cores in a uniform mode are generated in the superior performance case with an appropriate head swing, rather than with one pair of pressure cores in the case of no head swing. The findings suggest that the swimming biological device design may improve its hydrodynamic performance through the head swing motion.This paper studies the effect of the head swing motion on the fishlike robot swimming performance numerically. Two critical parameters are employed in describing the kinematics of the head swing: the leading edge amplitude of the head and the trailing edge amplitude of the head. Three-dimensional Navier-Stokes equations are used to compute the viscous flow over the robot. The user-defined functions and the dynamic mesh technology are used to simulate the fishlike swimming with the head swing motion The results reveal that it is of great benefit for the fish to improve the thrust and also the propulsive efficiency by increasing the two amplitudes properly. Superior hydrodynamic performance can be achieved at the leading edge amplitudes of 0.05L ( L is the fish length) and the trailing edge amplitudes of 0.08L. The unsteady flow fields clearly indicate the evolution process of the flow structures along the swimming fish. Thrust-indicative flow structures with two pairs of pressure cores in a uniform mode are generated in the superior performance case with an appropriate head swing, rather than with one pair of pressure cores in the case of no head swing. The findings suggest that the swimming biological device design may improve its hydrodynamic performance through the head swing motion.
关 键 词:fishlike swimming head swing motion hydrodynamic performance biological device design
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] U661.313[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...