Cutting of Phragmites australis as a lake restoration technique: Productivity calculation and nutrient removal in Wuliangsuhai Lake, northern China  

Cutting of Phragmites australis as a lake restoration technique: Productivity calculation and nutrient removal in Wuliangsuhai Lake, northern China

在线阅读下载全文

作  者:Jan Felix Kobbing Niels Thevs Stefan Zerbe 

机构地区:[1]Klasmann-Deilmann Company, Georg-Klasmann-Str. 2-19, 49744 Geeste, Germany [2]World Agroforestry Center, Central Asia Branch Office, University of Central Asia, 138 Toktogol Street, 720001 Bishkek, Kyrgyzstan [3]Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy

出  处:《Research in Cold and Arid Regions》2016年第5期400-410,共11页寒旱区科学(英文版)

基  金:the financial support of the project "Sustainable Water Management and Wetland Restoration in Settlements of Continental-arid Central Asia" (Su Wa Rest) by the Kurt-Eberhard-Bode Foundation within the Stifterverband für die Deutsche Wissenschaft

摘  要:Reed is one of the most frequent and dominant species in wetlands all over the world, with common reed (Phragmites australis (Cav.) Trin. ex Steud.) as the most widely distributed species. In many wetlands, P. australis plays a highly ambivalent role. On the one hand, in many wetlands it purifies wastewater, provides habitat for numerous species, and is a potentially valuable raw material, while on the other hand it is an invasive species which expands aggressively, prevents fishing, blocks ditches and waterways, and builds monospecies stands. This paper uses the eutrophic reed-swamp of Wuliangsuhai Lake in Inner Mongolia, northern China, as a case to present the multiple benefits of regular reed cutting. The reed area and aboveground biomass production are calculated based on field data. Combined with data about water and reed nutrient content, the impact of reed cutting on the lake nutrient budget (N and P) is investigated. Currently, at this lake around 100,000 tons of reed are harvested in winter annually, removing 16% and 8% of the total nitrogen and phosphorus influx, respectively. Harvesting all available winter reed could increase the nutrient removal rates to 48% and 24%, respectively. We also consider the effects of summer harvesting, in which reed biomass removal could overcompensate for the nutrient influx but could potentially reduce reed regrowth.Reed is one of the most frequent and dominant species in wetlands all over the world, with common reed (Phragmites australis (Cav.) Trin. ex Steud.) as the most widely distributed species. In many wetlands, P. australis plays a highly ambivalent role. On the one hand, in many wetlands it purifies wastewater, provides habitat for numerous species, and is a potentially valuable raw material, while on the other hand it is an invasive species which expands aggressively, prevents fishing, blocks ditches and waterways, and builds monospecies stands. This paper uses the eutrophic reed-swamp of Wuliangsuhai Lake in Inner Mongolia, northern China, as a case to present the multiple benefits of regular reed cutting. The reed area and aboveground biomass production are calculated based on field data. Combined with data about water and reed nutrient content, the impact of reed cutting on the lake nutrient budget (N and P) is investigated. Currently, at this lake around 100,000 tons of reed are harvested in winter annually, removing 16% and 8% of the total nitrogen and phosphorus influx, respectively. Harvesting all available winter reed could increase the nutrient removal rates to 48% and 24%, respectively. We also consider the effects of summer harvesting, in which reed biomass removal could overcompensate for the nutrient influx but could potentially reduce reed regrowth.

关 键 词:common reed ecosystem restoration water purification reed utilization wetland ecosystem DRYLAND 

分 类 号:X524[环境科学与工程—环境工程] X703.1

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象