机构地区:[1]Department of Materials Science & Engineering, School of Engineering, Shiraz University, Shiraz 115019, Iran [2]Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj 128747, Iran [3]Department of Materials Engineering, Islamic Azad University Central Tehran Branch, Tehran 009821, Iran
出 处:《Journal of Iron and Steel Research International》2016年第9期988-996,共9页
基 金:Sponsored by Iran National Science Foundation(94016117)
摘 要:The concept of microalloying was applied to the δ-TRIP (transformation-induced plasticity) steel to inves- tigate the feasibility of increasing the mechanical properties and understanding the effect of microalloying on the morphology and structure of the steel. A hot rolled δ-TRIP steel with three different contents of Nb (0, 0.03, 0.07 mass%) was subjected to the microstructural and mechanical examination. The high Al and Si concentration in these steels guaranteed the presence of the considerable δ-ferrite phase in the microstructure after the casting and the subsequent hot rolling. The obtained results showed that Nb dramatically affects the microstructure the dynamic re- covery and recrystallization behavior, as well as the grain shape and thus the stability of austenite after the thermo- mechanical process of hot rolling. The results also revealed an unexpected effect of Nb on the mechanical properties. The addition of Nb to the δ-TRIP steel led to a significant decrease in the ultimate strength (from 1144 to 917 MPa) and an increase in ductility (from 24% to 28%). These unconventional results could be explained by the change in the steel microstructure. The work-hardening'behaviors of all samples exhibit three stages of the work-hardening rate evolution. At the stage 2, the work-hardening rate of the studied steels increased, being attributed to the TRIP effect and the transformation of austenite to martensite.The concept of microalloying was applied to the δ-TRIP (transformation-induced plasticity) steel to inves- tigate the feasibility of increasing the mechanical properties and understanding the effect of microalloying on the morphology and structure of the steel. A hot rolled δ-TRIP steel with three different contents of Nb (0, 0.03, 0.07 mass%) was subjected to the microstructural and mechanical examination. The high Al and Si concentration in these steels guaranteed the presence of the considerable δ-ferrite phase in the microstructure after the casting and the subsequent hot rolling. The obtained results showed that Nb dramatically affects the microstructure the dynamic re- covery and recrystallization behavior, as well as the grain shape and thus the stability of austenite after the thermo- mechanical process of hot rolling. The results also revealed an unexpected effect of Nb on the mechanical properties. The addition of Nb to the δ-TRIP steel led to a significant decrease in the ultimate strength (from 1144 to 917 MPa) and an increase in ductility (from 24% to 28%). These unconventional results could be explained by the change in the steel microstructure. The work-hardening'behaviors of all samples exhibit three stages of the work-hardening rate evolution. At the stage 2, the work-hardening rate of the studied steels increased, being attributed to the TRIP effect and the transformation of austenite to martensite.
关 键 词:δ-TRIP steel Nb microalloying high Al steel mechanical property WORK-HARDENING
分 类 号:TG142.1[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...