基于兴奋-抑制交叉视觉皮质模型的V1区轮廓整合机制和注意力选择实现  

Implementation of V1 Area Contour Integration Mechanism and Attention Selection Based on Excitation-Inhibition Intersecting Cortical Model

在线阅读下载全文

作  者:高山[1] 毕笃彦[1] 任宇环 魏娜[1] GAO Shan BI Duyan REN Yuhuan WEI Na(College of Engineering, The Air Force Engineering University, Xi'an 710038, China Guangzhou Military Region Air Force Unit 95007, Guangzhou 510000, China)

机构地区:[1]空军工程大学工程学院 [2]广州军区空军95007部队

出  处:《生物医学工程学杂志》2016年第5期963-971,共9页Journal of Biomedical Engineering

基  金:国家自然科学基金资助项目(61203268)

摘  要:本文旨在利用模仿生物神经细胞同步脉冲发放的交叉视觉皮质模型(ICM)对生物视觉系统的轮廓整合机制及注意力选择机制进行初步探索。将生物神经元"兴奋-抑制"振荡子的思想引入到ICM中,同时引入目标轮廓链码作为高层反馈控制输入,提出了拥有自底向上(BUTTON-UP)及自顶向下(TOP-DOWN)机制的兴奋-抑制交叉视觉皮质模型(EI-ICM)。仿真实验显示,本文提出的模型可有效抑制噪声使得光滑边缘同步发放,从而完成BOTTOM-UP过程;目标轮廓链码的引入可得到与输入目标链码一致的目标轮廓,而其它目标由于与输入目标链码不匹配,无法形成闭合轮廓,从而完成TOP-DOWN过程。结果表明本文提出的模型可模拟视觉皮层V1区轮廓整合及注意力选择机制。This paper aims to utilize the intersecting cortical model (ICM), which imitates the biological neural cells sync pulse, to preliminary research about the contour integration mechanism and the selection of attention. The idea of "Excitement-Inhibition" oscillation is introduced into the ICM, and meanwhile, the target contour chain code is used as the high-level feedback to control the input. Thus, we propose the Excitation-Inhibition-ICM which contains both the BUTTON-UP and the TOP-DOWN mechanism. The experimental results showed that the proposed model could effectively suppress noise to make the smooth edge synchronization issue, thus completing the process of BOTTOM-UP. The introduction of the target contour chain code can obtain consistent target outline with the input target chain code, but other targets cannot form a closed contour since they do not match with the input target chain code, so as to realize the TOP-DOWN mechanism. The results proved that our proposed model could imitate the contour integration mechanism and the selection of attention of the visual cortex V1.

关 键 词:交叉视觉皮质模型 V1区轮廓整合 目标轮廓链码 注意力选择 

分 类 号:Q436[生物学—生理学] TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象