科研社交网络中基于联合概率矩阵分解的科技论文推荐方法研究  被引量:9

Study of Scientific Paper Recommendation Method Based on Unified Probabilistic Matrix Factorization in Scientific Social Networks

在线阅读下载全文

作  者:吴燎原[1] 蒋军[2] 王刚[2] 

机构地区:[1]合肥工业大学科学技术研究院,合肥230009 [2]合肥工业大学管理学院,合肥230009

出  处:《计算机科学》2016年第9期213-217,共5页Computer Science

基  金:国家自然科学基金(71101042;71471054);安徽省自然科学基金(1608085MG150)资助

摘  要:近年来随着科研社交网络中科技论文数量爆炸式的增长,科研人员很难高效地找到与之相关的科技论文,因此面向科研工作者的科技论文推荐方法应运而生。然而,传统的科技论文推荐方法没有充分挖掘科研社交网络中广泛存在的社会化信息,导致科技论文推荐质量不高。为此,提出了一种科研社交网络中基于联合概率矩阵分解的科技论文推荐方法,在传统概率矩阵分解的基础上,融入了社会化标签信息和社会化群组信息来进行科技论文推荐。为了验证所提方法的有效性,抓取了科研社交网络CiteULike上的数据进行了实验。实验结果表明,与其它传统推荐方法相比较,所提方法在Precision和Recall两个评价指标上均取得了较好的推荐结果,并且能够应用于大规模数据集,具有良好的可扩展性。In recent years, the number of scientific papers in scientific social networks has grown at an explosive rate. It is difficult for researchers to find scientific papers related to their research. Therefore, the paper recommendation for re- searchers was proposed to solve this problem. However, many problems exist in traditional paper recommendation methods, especially for the fact that a lot of social information in scientific social network are not fully used, resulting in poor quality of paper reeommendation. Therefore, this research proposed a new paper recommendation method for re- searchers in scientific social networks based on the unified probability matrix faetorization. This method incorporates so- cial tag information and group information into traditional matrix factorization. In order to verify the validity of the pro- posed method, we crawled data from a famous scientific social network, i. e. CiteULike, to conduct experiments. Experi- mental results show that the proposed method gets the best recommendation results at the two evaluation metrics, i. e. Precision and Recall, compared to other traditional recommendation methods. The proposed method is linear with re- spect to the number of observed data,and performs well in scalability.

关 键 词:科技论文推荐 科研社交网络 联合概率矩阵分解 推荐方法 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象