检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Maria Silvina RIVEROS Raul Emilio VIDAL
机构地区:[1]FaMAF-CIEM, UNC-CONICET, Ciudad Universitaria, 5000 Cdrdoba Argentina
出 处:《Acta Mathematica Sinica,English Series》2016年第11期1255-1278,共24页数学学报(英文版)
基 金:Supported by CONICET and SECYT-UNC
摘 要:In this paper, we characterize the sharp boundedness of the one-sided fractional maximal function for one-weight and two-weight inequalities. Also a new two-weight testing condition for the one-sided fractional maximal function is introduced extending the work of Martin-Reyes and de la Torre. Improving some extrapolation result for the one-sided case, we get weak sharp bounded estimates for one-sided fractional maximal function and weak and strong sharp bounded estimates for one-sided fractional integral.In this paper, we characterize the sharp boundedness of the one-sided fractional maximal function for one-weight and two-weight inequalities. Also a new two-weight testing condition for the one-sided fractional maximal function is introduced extending the work of Martin-Reyes and de la Torre. Improving some extrapolation result for the one-sided case, we get weak sharp bounded estimates for one-sided fractional maximal function and weak and strong sharp bounded estimates for one-sided fractional integral.
关 键 词:One-sided fractional integrals one-sided maximal fractional function EXTRAPOLATION Saw-yer weights
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117