Molecular Characterization of Anisotropic Musielak–Orlicz Hardy Spaces and Their Applications  被引量:2

Molecular Characterization of Anisotropic Musielak–Orlicz Hardy Spaces and Their Applications

在线阅读下载全文

作  者:Bao De LI Xing Ya FAN Zun Wei FU Da Chun YANG 

机构地区:[1]College of Mathematics and System Science,Xinjiang University [2]Department of Mathematics,Linyi University [3]School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education

出  处:《Acta Mathematica Sinica,English Series》2016年第11期1391-1414,共24页数学学报(英文版)

基  金:partially supported by National Natural Science Foundation of China(Grant Nos.11461065,11161044,11571039 and 11361020);supported by Scientific Research Projects in Colleges and Universities in Xinjiang Uyghur Autonomous Region(Grant No.XJEDU2014S001);supported by National Natural Science Foundation of China(Grant No.11271175);partially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120003110003);the Fundamental Research Funds for Central Universities of China(Grant Nos.2013YB60and 2014KJJCA10)

摘  要:Let A be an expansive dilation on Rn and φ : Hn×[0, ∞)→[0, ∞) an anisotropic Musielak-Orlicz function. Let HAφ(R^n) be the anisotropic Hardy space of Musielak-Orlicz type defined via the grand maximal function. In this article, the authors establish its molecular characterization via the atomic characterization of HAφ(R^n). The molecules introduced in this article have the vanishing moments up to order s and the range of s in the isotropic case (namely, A := 2In×n) coincides with the range of well-known classical molecules and, moreover, even for the isotropic Hardy space HP(R^n) with p∈[(0, 1] (in this case, A := 2In×n,φ(x, t) := t^p for all x ∈ R^n and t∈[0,∞)), this molecular characterization is also new. As an application, the authors obtain the boundedness of anisotropic Caldeon-Zygmund operators from HA^φ(Hn) to L^φ(R^n) or from HA^φ(Hn) to itself.Let A be an expansive dilation on Rn and φ : Hn×[0, ∞)→[0, ∞) an anisotropic Musielak-Orlicz function. Let HAφ(R^n) be the anisotropic Hardy space of Musielak-Orlicz type defined via the grand maximal function. In this article, the authors establish its molecular characterization via the atomic characterization of HAφ(R^n). The molecules introduced in this article have the vanishing moments up to order s and the range of s in the isotropic case (namely, A := 2In×n) coincides with the range of well-known classical molecules and, moreover, even for the isotropic Hardy space HP(R^n) with p∈[(0, 1] (in this case, A := 2In×n,φ(x, t) := t^p for all x ∈ R^n and t∈[0,∞)), this molecular characterization is also new. As an application, the authors obtain the boundedness of anisotropic Caldeon-Zygmund operators from HA^φ(Hn) to L^φ(R^n) or from HA^φ(Hn) to itself.

关 键 词:Anisotropic expansive dilation Muckenhoupt weight Musielak–Orlicz function Hardy space MOLECULE anisotropic Calderón–Zygmund operator 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象