检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李学俊[1] 徐佳[1] 王福田[1] 朱二周[1] 吴蕾[1] LI Xuejun XU Jia WANG Futian ZHU Erzhou WU Lei(School of Computer Science and Technology, Anhui University, Hefei 230601)
机构地区:[1]安徽大学计算机科学与技术学院,合肥230601
出 处:《模式识别与人工智能》2016年第9期790-796,共7页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.61672034);教育部社科研究青年基金项目(No.16YJCZH048);安徽省教育厅自然科学研究重点项目(No.KJ2016A024)资助~~
摘 要:云工作流系统研究集中在工作流任务执行的时间效率优化,然而时间最优的任务调度方案可能存在不同能耗,因此,文中求解满足时间约束时能耗最优的调度方案.首先改进任务执行能耗模型,设计适用于评价任务调度方案执行能耗的适应度计算方法.然后基于精准调整粒子速度的自适应权重,提出解决任务调度能耗优化问题的自适应粒子群算法.实验表明,文中算法收敛稳定,调度方案执行能耗较低.In the research on cloud workflow systems, the time efficiency optimization of the task execution is the emphasis. The energy consumption optimization of the task execution is often ignored. However, time-optimal task scheduling plans have different energy consumption. Therefore, how to solve energy-optimal task scheduling plans with time constraint are discussed in this paper. Firstly, the energy model of task execution is improved. Then, the fitness computation method of the task plan is designed to evaluate energy consumption. Finally, an adaptive inertia weight computation method is applied to adjust particle velocity accurately and a particle swarm optimization ( PSO) algorithm is presented to solve the energy consumption optimization problem of task scheduling in cloud workflow systems. Experimental results show that the proposed algorithm has a stable convergence speed with low energy consumption.
关 键 词:云计算 工作流调度 绿色计算 粒子群优化 惯性权重
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249