检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学物联网工程学院,江苏无锡214122 [2]物联网技术应用教育部工程研究中心,江苏无锡214122
出 处:《传感技术学报》2016年第7期1049-1055,共7页Chinese Journal of Sensors and Actuators
基 金:国家自然科学基金项目(61174032);江苏省自然科学基金面上项目(BK20131107);中央高校基本科研业务费专项资金项目(JUSRP51510)
摘 要:针对无线传感器网络通常处于开放性环境中,极易遭受外界欺骗攻击这一问题,设计了一种基于改进粒子群优化算法的K均值欺骗攻击检测模型。该模型将欺骗攻击检测描述为一个统计假设检验,基于接收信号强度空间与物理位置的相关性,利用不同位置节点接收信号强度的差异进行攻击检测;对接收信号强度进行聚类分析,计算类中心之间的距离,通过阈值检测判断节点是否受到欺骗攻击。仿真结果表明,KIPSO欺骗攻击检测模型能在提高检出率、增强报警可信度的同时,有效解决传统聚类算法陷入局部极值的问题。As wireless sensor networks(WSNs)are usually deployed in open environment,they are vulnerable to the spoofing attack. A K-means based on Improved Particle Swarm Optimization(KIPSO)spoofing attack detection model is designed to solve this problem. The model described the spoofing attack detection as a statistical hypothesis testing. Take advantage of the received signal strength(RSS)differences between locations to detect attack,which based on the spatial correlation of the location and the RSS space. Using KIPSO algorithm cluster the RSS in attack detection phase. Then calculate the distance between two centroids. Eventually,judging whether spoofing attack exist or not via the trained threshold. Simulation results indicate that KIPSO spoofing attack detection model can not only improve detection rate or strengthen the alarm credibility,meanwhile,effectively solve problem of traditional clustering algorithm trapped in local minima.
关 键 词:无线传感器网络 欺骗攻击检测 信号接收强度 KIPSO聚类算法
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145