Congestion warning method based on the Internet of vehicles and community discovery of complex networks  

Congestion warning method based on the Internet of vehicles and community discovery of complex networks

在线阅读下载全文

作  者:Zhao Ting Wang Bin Gao Qi 

机构地区:[1]School of Automation, Beijing Institute of Technology

出  处:《The Journal of China Universities of Posts and Telecommunications》2016年第4期37-45,共9页中国邮电高校学报(英文版)

基  金:supported by the National Natural Science Foundation of China(61433003,61273150);the Beijing Higher Education Young Elite Teacher Project(YETP1192)

摘  要:The traffic congestion occurs frequently in urban areas, while most existing solutions only take effects after congesting. In this paper, a congestion warning method is proposed based on the Internet of vehicles(IOV) and community discovery of complex networks. The communities in complex network model of traffic flow reflect the local aggregation of vehicles in the traffic system, and it is used to predict the upcoming congestion. The real-time information of vehicles on the roads is obtained from the IOV, which includes the locations, speeds and orientations of vehicles. Then the vehicles are mapped into nodes of network, the links between nodes are determined by the correlations between vehicles in terms of location and speed. The complex network model of traffic flow is hereby established. The communities in this complex network are discovered by fast Newman(FN) algorithm, and the congestion warnings are generated according to the communities selected by scale and density. This method can detect the tendency of traffic aggregation and provide warnings before congestion occurs. The simulations show that the method proposed in this paper is effective and practicable, and makes it possible to take action before traffic congestion.The traffic congestion occurs frequently in urban areas, while most existing solutions only take effects after congesting. In this paper, a congestion warning method is proposed based on the Internet of vehicles(IOV) and community discovery of complex networks. The communities in complex network model of traffic flow reflect the local aggregation of vehicles in the traffic system, and it is used to predict the upcoming congestion. The real-time information of vehicles on the roads is obtained from the IOV, which includes the locations, speeds and orientations of vehicles. Then the vehicles are mapped into nodes of network, the links between nodes are determined by the correlations between vehicles in terms of location and speed. The complex network model of traffic flow is hereby established. The communities in this complex network are discovered by fast Newman(FN) algorithm, and the congestion warnings are generated according to the communities selected by scale and density. This method can detect the tendency of traffic aggregation and provide warnings before congestion occurs. The simulations show that the method proposed in this paper is effective and practicable, and makes it possible to take action before traffic congestion.

关 键 词:IOV complex network community discovery congestion warning 

分 类 号:U491.265[交通运输工程—交通运输规划与管理] O157.5[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象