机构地区:[1]State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration,Beijing 100029,China [2]National Earthquake Infrastructure Service,China Earthquake Administration,Beijing 100036,China [3]Earthquake Administration of Shanxi Province,Xi'an 710068,China
出 处:《Geodesy and Geodynamics》2016年第4期230-236,共7页大地测量与地球动力学(英文版)
基 金:supported by the Na-tional Science Foundation of China(41474090);the State Key Laboratory of Earthquake Dynamics(LED 2013A02)
摘 要:On January 21, 2016, a strong earthquake with a magnitude of Ms6.4 occurred at Menyuan, Qinghai Province of China. In almost the same region, there was another strong earthquake happened in 1986, with similar magnitude and focal mechanism. Based on comprehensive analysis of regional active faults, focal mechanism solutions, precise locations of aftershocks, as well as GPS crustal deformation, we inferred that the Lenglongiing active fault dips NE rather than SW as suggested by previous studies. Considering the facts that the 2016 and i986 Ms6.4 Menyuan earthquakes are closely located with similar focal mechanisms, both of the quakes are on the north side of the Lenglongling Fault and adjacent to the fault, and the fault is dipping NE direction, we suggest that the fault should be the seismogenic structure of the two events. The Lenglongling Fault, as the western segment of the well-known Tianzhu seismic gap in the Qilian-Haiyuan active fault system, is in a relatively active state with frequent earthquakes in recent years, implying a high level of strain accumulation and a high potential of major event. It is also possible that the Lengiongiing Fault and its adjacent fault, the Jinqianghe Fault in the Tianzhu seismic gap, are rupturing simultaneously in the future.On January 21, 2016, a strong earthquake with a magnitude of Ms6.4 occurred at Menyuan, Qinghai Province of China. In almost the same region, there was another strong earthquake happened in 1986, with similar magnitude and focal mechanism. Based on comprehensive analysis of regional active faults, focal mechanism solutions, precise locations of aftershocks, as well as GPS crustal deformation, we inferred that the Lenglongiing active fault dips NE rather than SW as suggested by previous studies. Considering the facts that the 2016 and i986 Ms6.4 Menyuan earthquakes are closely located with similar focal mechanisms, both of the quakes are on the north side of the Lenglongling Fault and adjacent to the fault, and the fault is dipping NE direction, we suggest that the fault should be the seismogenic structure of the two events. The Lenglongling Fault, as the western segment of the well-known Tianzhu seismic gap in the Qilian-Haiyuan active fault system, is in a relatively active state with frequent earthquakes in recent years, implying a high level of strain accumulation and a high potential of major event. It is also possible that the Lengiongiing Fault and its adjacent fault, the Jinqianghe Fault in the Tianzhu seismic gap, are rupturing simultaneously in the future.
关 键 词:2016 Ms6.4 Menyuan earthquake Seismogenic structure Tianzhu seismic gap Qilian-Haiyuan fault system
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...