复杂场景下基于多特征融合的视频跟踪  被引量:3

Multiple features fusion for object tracking in complex scenes

在线阅读下载全文

作  者:丁建伟[1] 唐云祁[1] 田华伟[1] 张小博[2] 

机构地区:[1]中国人民公安大学,北京102623 [2]中国电子科技集团公司第三研究所,北京100015

出  处:《电视技术》2016年第10期93-96,共4页Video Engineering

基  金:国家自然科学基金项目(61503388;61402484;61503387);中国人民公安大学2016年度中央高校基本科研业务费项目(2016JKF01203)

摘  要:为了解决常见视频跟踪方法在复杂场景中难以有效跟踪运动物体的难题,研究了在粒子滤波框架下基于多特征融合的判别式视频跟踪算法。首先分析了特征提取和跟踪算法的鲁棒性和准确性的关系,指出融合多种特征能有效地提升算法在复杂场景中的跟踪效果,然后选择提取HSV颜色特征和HOG特征描述目标表观,并在线训练逻辑斯特回归分类器构造判别式目标表观模型。在公开的复杂场景视频进行测试,比较了使用单一特征和多种特征的实验效果,并且将所提算法和经典跟踪算法进行了比较,实验结果表明融合多种特征的视频跟踪更具鲁棒性和准确性。To address difficulties of traditional object tracking methods which can't track moving object effectively in complex scenes, a multiple features fusion based discriminative object tracking algorithm in particle filter framework is proposed. Firstly, the relationship between feature extraction and robustness and accuracy of tracking algorithm is analyzed, and points out that it can promote tracking performance largely by using multiple features in complex scenes. HSV color feature and HOG feature are selected to represent appearance of object, and the online trained logistic regression classifier is used to construct the discriminative appear- ance model. The method is tested in public videos with complex scenes. Results obtained by using only one kind of feature and multiple kinds of features are compared. And the proposed method with other classic tracking algorithms are compared. Experimen- tal results show that the proposed object tracking algorithm with multiple features is more robust and accurate,

关 键 词:视频跟踪 多特征融合 复杂场景 

分 类 号:TN941.1[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象