Remarks on Classical Solutions to Steady Quantum Navier-Stokes Equations  

Remarks on Classical Solutions to Steady Quantum Navier-Stokes Equations

在线阅读下载全文

作  者:Mohamed Ahmed Abdallah Xu-yang SUN Wei-wei WANG Jun-ping YIN 

机构地区:[1]School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China [2]Mathematics School & Institute, Jilin University, Changchun 130012, China [3]Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

出  处:《Acta Mathematicae Applicatae Sinica》2016年第4期957-962,共6页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(Grant No.U1430103)

摘  要:The paper of Dong [Dong, J. Classical solutions to one-dimensional stationary quantum Navier- Stokes equations, J. Math Pure Appl. 2011] which proved the existence of classical solutions to one-dimensional steady quantum Navier-Stokes equations, when the nonzero boundary value u0 satisfies some conditions. In this paper, we obtain a different version of existence theorem without restriction to u0. As a byproduct, we get the existence result of classical solutions to the stationary quantum Navier-Stokes equations.The paper of Dong [Dong, J. Classical solutions to one-dimensional stationary quantum Navier- Stokes equations, J. Math Pure Appl. 2011] which proved the existence of classical solutions to one-dimensional steady quantum Navier-Stokes equations, when the nonzero boundary value u0 satisfies some conditions. In this paper, we obtain a different version of existence theorem without restriction to u0. As a byproduct, we get the existence result of classical solutions to the stationary quantum Navier-Stokes equations.

关 键 词:quantum Navier-Stokes equations steady solutions stationary solutions Leray-Schauder fixed-point theorem 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象