基于卡尔曼滤波算法的稻纵卷叶螟短期预测模型  被引量:6

Short-term Forecasting Models on Occurrence of Rice Leaf Roller Based on Kalman Filter Algorithm

在线阅读下载全文

作  者:包云轩[1,2] 陈心怡[1,2] 谢晓金[1,2] 王琳[1,2] 陆明红 

机构地区:[1]南京信息工程大学气象灾害预报和评估协同创新中心,南京210044 [2]江苏省农业气象重点实验室/南京信息工程大学,南京210044 [3]农业部全国农业技术推广与服务中心,北京100125

出  处:《中国农业气象》2016年第5期578-586,共9页Chinese Journal of Agrometeorology

基  金:国家自然科学基金面上项目(41475106;41075086);国家公益性行业(气象)科研专项(GYHY201306053);江苏省农业科技自主创新项目[SCX(12)3058];江苏省高校优势学科建设工程

摘  要:利用1994-2014年中国南方四大稻区(华南、西南、江岭和江淮稻区)代表性病虫测报站的稻纵卷叶螟逐候田间赶蛾量资料,筛选出影响各站稻纵卷叶螟发生量的关键气象因子,应用卡尔曼滤波方法分别对各站建立稻纵卷叶螟迁入期候发生量的卡尔曼短期预测模型,并计算模型的准确率、误差大小和稳定性。结果表明:(1)稻纵卷叶螟发生量与前一候和前两候的田间蛾量呈极显著正相关(P<0.01),与前一候的近地面最低气温、平均气温和最高气温呈极显著正相关(P<0.01),与前一候的地面气压呈极显著负相关(P<0.01)。(2)经1994-2011年的回检拟合和2012-2014年试报检验,卡尔曼模型的发生量预测综合平均误差为-88.63,平均绝对误差为217.72,均方根误差为605.04。发生量预测综合准确率为84.33%,平均历史拟合率为83.33%,各站卡尔曼模型的预报结果与实测值基本吻合,表明模型可以应用于稻纵卷叶螟候发生量的预测。In this paper, the pentad systematic investigation data of C. Medinalis at the four representative plant protection stations of four main rice-growing regions(including the rice-growing region of the south China, the rice-growing region of the southwestern China, the rice-growing region between the Nanling mountains and the Yantze River valley and the rice-growing region between the Yantze River valley and the Huaihe River valley) in China was collected from 1994 to 2014, the key meteorological factors influencing on C. Medinalis' occurrence amount were screened out and Kalman filter algorithm was used to establish the short-term forecasting models of C. Medinalis' pentad occurrence amount at the four plant protection stations, including Quanzhou in the Guangxi Zhuang Autonomous Region, Xiushan in Chongqing city, Xiangyin in Hunan province and Zhangjiagang in Jiangsu province in the immigration and damage period of C. Medinalis respectively. Based on the back substitution fittings and forecasting tests of the model, the errors and stability and accuracy rates of the Kalman model were calculated. The results showed as follows:(1) for four stations, the occurrence amount of C. medinalis in the present pentad was significantly and positively correlated(P0.01) with the C. medinalis' s moth amounts of the preceding pentad and the preceding two pentads in the field respectively. There were significantly positive correlations(P0.01) between the occurrence amounts of C. medinalis in the present pentad and the minimum air temperature, mean air temperature and maximum air temperature in the preceding pentad. But the pentad occurrence amount was significantly and negatively correlated with the surface pressure in the preceding pentad.(2) The back substitution fitting calculations from the Kalman model on the occurrence amount of C. Medinalis from 1994 to 2011 and the trial forecast tests from 2012 to 2014 showed that the comprehensive mean error(ME) of the occurrence amounts by the Kalman mod

关 键 词:稻纵卷叶螟 气象因子 卡尔曼滤波算法 候发生量预报模型 准确率 

分 类 号:S435.112.1[农业科学—农业昆虫与害虫防治]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象