检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Astronautics,Beijing University of Aeronautics and Astronautics
出 处:《Chinese Physics Letters》2016年第10期153-157,共5页中国物理快报(英文版)
基 金:Supported by the National Natural Science Foundation of China under Grant Nos 11575019 and 11275021
摘 要:Considering the feature of distributions of parameters within the micro-hollow cathode discharge, we use a simple method to separate the sheath region characterized by drastic changes of plasma parameters and the bulk plasma region characterized by smooth changes of plasma parameters. A zero-dimensional chemical kinetic model is used to analyze the dissociation mechanism of CO2 in the bulk plasma region of a micro-hollow cathode discharge and is validated by comparisons with previous modeling and experimental results. The analysis of the chemical kinetic processes has shown that the electron impact dissociation and heavy species impact dissociation are dominant in different stages of the rnicro-hollow cathode discharge process for a given applied voltage. The analysis of energy consumption distributions under different applied voltages reveals that the main reason of the conversion improvement with the increase of the applied voltage is that more input energy is distributed to the heavy species impact dissociation.Considering the feature of distributions of parameters within the micro-hollow cathode discharge, we use a simple method to separate the sheath region characterized by drastic changes of plasma parameters and the bulk plasma region characterized by smooth changes of plasma parameters. A zero-dimensional chemical kinetic model is used to analyze the dissociation mechanism of CO2 in the bulk plasma region of a micro-hollow cathode discharge and is validated by comparisons with previous modeling and experimental results. The analysis of the chemical kinetic processes has shown that the electron impact dissociation and heavy species impact dissociation are dominant in different stages of the rnicro-hollow cathode discharge process for a given applied voltage. The analysis of energy consumption distributions under different applied voltages reveals that the main reason of the conversion improvement with the increase of the applied voltage is that more input energy is distributed to the heavy species impact dissociation.
关 键 词:of on is MHCD Analysis of Dissociation Mechanism of CO2 in a Micro-Hollow Cathode Discharge in CO
分 类 号:P402[天文地球—大气物理学与大气环境]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222