Analysis of Dissociation Mechanism of CO_2 in a Micro-Hollow Cathode Discharge  被引量:1

Analysis of Dissociation Mechanism of CO_2 in a Micro-Hollow Cathode Discharge

在线阅读下载全文

作  者:程将领 王海兴 孙素蓉 

机构地区:[1]School of Astronautics,Beijing University of Aeronautics and Astronautics

出  处:《Chinese Physics Letters》2016年第10期153-157,共5页中国物理快报(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant Nos 11575019 and 11275021

摘  要:Considering the feature of distributions of parameters within the micro-hollow cathode discharge, we use a simple method to separate the sheath region characterized by drastic changes of plasma parameters and the bulk plasma region characterized by smooth changes of plasma parameters. A zero-dimensional chemical kinetic model is used to analyze the dissociation mechanism of CO2 in the bulk plasma region of a micro-hollow cathode discharge and is validated by comparisons with previous modeling and experimental results. The analysis of the chemical kinetic processes has shown that the electron impact dissociation and heavy species impact dissociation are dominant in different stages of the rnicro-hollow cathode discharge process for a given applied voltage. The analysis of energy consumption distributions under different applied voltages reveals that the main reason of the conversion improvement with the increase of the applied voltage is that more input energy is distributed to the heavy species impact dissociation.Considering the feature of distributions of parameters within the micro-hollow cathode discharge, we use a simple method to separate the sheath region characterized by drastic changes of plasma parameters and the bulk plasma region characterized by smooth changes of plasma parameters. A zero-dimensional chemical kinetic model is used to analyze the dissociation mechanism of CO2 in the bulk plasma region of a micro-hollow cathode discharge and is validated by comparisons with previous modeling and experimental results. The analysis of the chemical kinetic processes has shown that the electron impact dissociation and heavy species impact dissociation are dominant in different stages of the rnicro-hollow cathode discharge process for a given applied voltage. The analysis of energy consumption distributions under different applied voltages reveals that the main reason of the conversion improvement with the increase of the applied voltage is that more input energy is distributed to the heavy species impact dissociation.

关 键 词:of on is MHCD Analysis of Dissociation Mechanism of CO2 in a Micro-Hollow Cathode Discharge in CO 

分 类 号:P402[天文地球—大气物理学与大气环境]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象