检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:童钊[1] 肖正[2] 李肯立[2] 刘宏[1] 李俊[1]
机构地区:[1]湖南师范大学数学与计算机科学学院,湖南长沙410012 [2]湖南大学信息科学与工程学院,湖南长沙410082
出 处:《湖南大学学报(自然科学版)》2016年第10期139-147,共9页Journal of Hunan University:Natural Sciences
基 金:国家自然科学基金资助项目(61370095;61502165);湖南师范大学大学生创新性实验项目(201501023)~~
摘 要:针对分布式系统中任务调度问题,根据分布式环境下的任务调度特性,建立了一个非合作博弈的多角色任务调度框架,在此基础上提出了一种基于纳什均衡联合调度策略的分布式强化学习算法.相比于静态调度算法,该算法需要更少的系统知识.能使调度器主动学习任务到达和执行的相关先验知识,以适应相邻调度器的分配策略,目标是使得调度器的策略趋向纳什均衡.模拟实验结果表明:所提出的算法在任务的预期时间和公平性上相对于OLB(机会主义负载均衡)、MET(最小执行时间)、MCT(最小完成时间)等同类调度算法具有更好的调度性能.To address the task scheduling problem in distributed systems, based on an important feature of task scheduling in distributed computing environment, we have established a non-cooperative game framework for multi-layer multi-role, and put forward a distributed reinforcement learning algorithm of the joint scheduling strategy of Nash equilibrium. Compared with static scheduling algorithm, the proposed al- gorithm needs less system information. It enables the scheduler to actively learn task arrival, perform re- lated knowledge and adapt to the adjacent scheduler allocation policy. The target is to move the schedulers strategy toward Nash equilibrium. Simulation experiments show that the proposed algorithm achieves excellent performance in expected response time of tasks and fairness, compared with classical scheduling algorithms such as OLB, MET and MCT.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222