一种面向机械车间柔性工艺路线的加工任务节能调度方法  被引量:20

A Scheduling Method for Reducing Energy Consumption of Machining Job Shops Considering the Flexible Process Plan

在线阅读下载全文

作  者:何彦[1] 王乐祥[1] 李育锋[1] 王禹林[2] HE Yan WANG Lexiang LI Yufeng WANG Yulin(State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094)

机构地区:[1]重庆大学机械传动国家重点实验室,重庆400030 [2]南京理工大学机械工程学院,南京210094

出  处:《机械工程学报》2016年第19期168-179,共12页Journal of Mechanical Engineering

基  金:国家自然科学基金(51575072);重庆市基础与前沿研究计划(cstc2015jcyj BX0088;cstc2013jcyj A70014);江苏省"六大人才高峰"(2014-ZBZZ-006);南京理工大学"卓越计划""紫金之星"(2015-zijin-07)资助项目

摘  要:大量研究表明机械车间消耗了大量能量,因此降低机械车间的能耗是实现可持续制造的策略之一。现有机械车间节能调度研究主要针对给定的或者具有部分柔性的工艺路线,缺乏对机械车间任务工艺路线多柔性的节能调度研究。针对机械车间任务柔性工艺路线对机械车间调度能耗的影响特性,提出一种面向机械车间柔性工艺路线的节能调度方法。首先,分析了面向机械车间柔性工艺路线的加工任务调度的能耗特性;基于此,构建了节能调度模型,该模型是以任务加工总能耗、加工完成时间、机床负载为目标。进一步提出了一种改进的Q学习算法对该模型进行求解获得其Pareto解。最后通过案例验证了提出模型的节能效果及算法的可行性。Numerous studies indicated that amount of energy is consumed by machining job shops. Hence reducing the energy consumption of machining job shops is one of the strategies for sustainable manufacturing. The existing researches of scheduling method considering energy consumption for machining job shops focus on constant or partly flexible process plan, and the study considering multi flexibilities of process plan is scarce. A scheduling method for reducing energy consumption of machining job shops considering the flexible process plan is proposed which considers the influence that flexible process plan have on energy consumption. Based on the analysis of energy consumption characteristics of flexible process plan-oriented task scheduling, a mathematical model of task scheduling problem is formulated. The optimal objects of the model include total energy consumption of task, makespan and workload of machine. The Q-learning algorithm is improved to find the Pareto optimal solution of the multi-objective mathematical model. Finally, the experimental results indicate that the proposed model has energy saving potential and improved Q-learning algorithm is feasible.

关 键 词:柔性工艺路线 能耗 Pareto多目标优化 改进Q学习算法 

分 类 号:TH186[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象