有限区间上的Korteweg-de Vries方程的快速镇定  

The rapid stabilization of the Korteweg-de Vries equation on a finite interval

在线阅读下载全文

作  者:王成强[1] 张秉钰 

机构地区:[1]四川大学数学学院,成都610065 [2]Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA

出  处:《中国科学:数学》2016年第10期1507-1532,共26页Scientia Sinica:Mathematica

基  金:国家自然科学基金(批准号:11231007,11471231和11571244);青年科学基金(批准号:11401404);教育部“长江学者和创新团队发展计划”(批准号:IRT 1273)资助项目

摘  要:Coron和L(2014)研究了区间(0,L)上的Korteweg-de Vries方程所描述的一类控制系统的快速镇定问题.对λ∈(0,∞),他们设计出了适当的状态反馈并证明了相应的闭环系统△_(λ,L)在L^2(0,L)中局部适定,闭环系统△_(λ,L)的状态轨线在L^2(0,L)中呈λ/2型指数衰减.本文进一步证明对_s∈[0,∞)\{j+1/2;j∈N_0}:(i)闭环系统△_(λ,L)在H^s(0,L)中整体适定;(ii)闭环系统△_(λ,L)的状态轨线在H^s(0,L)中仍然呈局部的λ/2型指数衰减.Coron and Lu(2014) have recently studied the rapid stabilization problem of a control system which describes the Korteweg-de Vries equation posed on a finite interval(0,L) with the control acting as the right-end Neumann boundary value.For any given,λ ∈(0,∞),a feedback control law is carefully designed by Coron and Lu so that the resulted close-loop system(denoted by △λ,L) possesses the following properties:(1) △λ,L is locally well-posed in the space L2(0,L) and(2) it is locally exponentially stable in the space L2(0,L) with decay rateλ/2.In this paper we continue the work of Coron and Lii to study △λ,L and show that it is(i) globally well-posed in the space Hs(0,L) and(ii) locally exponentially stable in the space Hs(0,L) with the decay rate λ/2 for any_s∈[0,∞)/{j+1/2;j∈N0}.

关 键 词:KORTEWEG-DE Vries 方程 初边值问题 快速镇定问题 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象