检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]深圳大学海岸带地理环境监测国家测绘地理信息局重点实验室,深圳518060 [2]国营北海防护林场,北海536000 [3]武汉大学资源与环境科学学院,武汉430079
出 处:《安徽农业大学学报》2016年第5期780-786,共7页Journal of Anhui Agricultural University
基 金:财政部林业公益性行业科研专项经费(201404305)资助
摘 要:以广西山口红树林自然保护区为研究区,1999和2005年SPOT4影像作为土地利用信息源,采用CA-Markov模型预测2011年和2017年研究区土地利用空间变化,在此基础上利用11个景观指数分析1999-2017年研究区整体景观格局演变情况。结果显示,CA-Markov模型模拟的2005年土地利用空间分布的面积和空间精度分别为93.13%和87.57%,具有较高可靠度;1999-2005年各用地类型的相互转化较为复杂;2005-2011年,红树林和养殖区增长最为显著;1999-2017年间,斑块数呈下降趋势,景观破碎化程度在减轻,受人类活动的影响在减弱,各斑块类型在景观中呈均衡化趋势分布,但景观稳定性和抗干扰性下降。研究表明CA-Markov模型是模拟与预测自然保护区土地利用变化的有力工具,能为土地规划与管理提供一定的决策信息。A CA-Markov model was used to predict the spatial changes of land utlization in 2011 and 2017. Eleven landscape metrics were implemented to analyze the entire-landscape pattern changes from 1999 to 2017 in Shankou Mangrove Forest Natural Reserve in Guangxi province using SPOT-4 remote sensing images in 1999 and 2005 as the information sources of land-use. The results showed that the area and space precisions of simu- lated 2005 land-use spatial distribution using CA-Markov model were 93.13% and 87.57%, respectively. The land-use transition into each other was complex from 1999 to 2005. The area of the mangrove and mariculture zone experienced the most pronounced increase from 2005 to 2011. During 1999-2017, the number of patches declined; the landscape fragmentation weakened with decreasing human disturbances; and the patch types showed an equalization distribution with declining landscape stability and interference immunity. This study demonstrated that the CA-Markov model is an effective tool for simulating and predicting the land-use change in a Natural Reserve, and providing useful decision-making support for land-use planning and management.
关 键 词:CA-Markov模型 土地利用变化 景观指数 遥感影像
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117