检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李娇[1] 商临萍[2] 郭红菊[2] 李伟[2] 苏丹霞[2] 张新[2] 潘伟[2] 郝春霞[2] 车莎[2]
机构地区:[1]山西医科大学护理学院,山西太原030001 [2]山西医科大学第一医院,山西太原030001
出 处:《中国感染控制杂志》2016年第10期730-734,共5页Chinese Journal of Infection Control
基 金:山西省科技攻关项目(20140313012-6)
摘 要:目的:构建重症监护病房(ICU)多重耐药菌医院感染的风险模型。方法对2012年10月—2015年9月入住 ICU>48 h 的836例患者进行回顾性分析,构建医院感染 logistic 回归模型,对模型进行拟和优度检验、ROC 曲线下面积(AUC)分析。结果3年入住 ICU >48 h 的患者共836例,多重耐药菌医院感染发病率为14.23%(119例)。15个单因素分析有意义的自变量纳入 logistic 多 因 素分析,结果显示,ICU 住院时间(OR =2.493;95%CI :1.816~3.494)、基础疾病种类(OR =1.536;95%CI :1.243~1.898)、低蛋白血症(OR =87.211;95%CI :36.165~210.304)、呼吸机插管日数(OR =1.723;95%CI =1.399~2.121)、发热(OR =20.639;95%CI :3.462~123.043)、原发肺部感染(OR=0.295;95%CI :0.133~0.664)变量进入 logistic 回归方程。评价模型效果:灵敏度95%,特异度87.9%,模型 ROC 的 AUC 为0.973。结论 logistic 回归模型对 ICU 患者医院感染预测风险拟合度较好。Objective To construct the risk model for healthcare-associated infection (HAI)with multidrug-re-sistant organisms(MDROs)in intensive care unit (ICU).Methods 836 patients who were admitted to ICU for more than 48 hours between October 2012 and September 2015 were analyzed retrospectively,logistic regression model of HAI was constructed,the model was conducted goodness of fit tests and the area under ROC curve analysis. Results Among 836 patients,incidence of HAI with MDROs was 14.23%(n=119).15 variables that were statis-tically significant in univariate analysis were included in logistic multivariate analysis,the results showed that the following variables entered into logistic regression equation:length of ICU stay (OR,2.493 [95%CI ,1 .816 -3.494]),underlying diseases (OR,1 .536 [95%CI ,1 .243 - 1 .898 ]),hypoproteinemia (OR,87.211 [95%CI , 36.165-210.304]),ventilator days (OR,1 .723 [95%CI ,1 .399-2.121 ]),fever(OR,20.639 [95%CI ,3.462 -123.043]),and primary pulmonary infection (OR,0.295 [95%CI ,0.133 -0.664]).Evaluation of model effect:sensitivity 95%,specificity 87.9%,the area under ROC curve 0.973.Conclusion Logistic regression model has a high goodness of fit in predicting HAI among ICU patients.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

