检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆交通大学交通运输学院,重庆400041 [2]重庆市交通规划研究院,重庆400020
出 处:《交通运输系统工程与信息》2016年第5期64-70,共7页Journal of Transportation Systems Engineering and Information Technology
基 金:重庆市博士后日常资助(Rc201509)~~
摘 要:针对基站定位精度低、信令采样间隔长、轨迹不连续的手机信令,提出一种职住及通勤OD(origin-destination)计算框架.对用户单日手机轨迹按时间排序,标识每个轨迹点的进出时间及停留时间,剔除长距离漂移轨迹点,对邻近轨迹点进行空间聚合.将全天划分为多个时窗,叠加用户多日轨迹,计算稳定指数并识别用户在各时窗内的多日稳定点.综合工作日与节假日稳定点判断用户居住地、工作地.采用基于常住人口的扩样方法,对街道通勤OD矩阵进行扩样.模型结果与重庆主城常住人口分布、2014年居民出行调查结果吻合.A methodology framework for training people's residence and work place is presented to overcome defects in extracting people's activity pattern from mobile phone data like low precision positioning accuracy, irregular trajectory interval. First, each user's daily trajectory is restructured to add the label of access time, departure time and delay time for each point. Spurious points are distinguished by given time and spatial threshold and then be clustered to filter out noise resulting from mobile service provider.Then, stable point for each time window is recognized by overlaying multi-days trajectory to get the most frequent location. User's residence and workplace are determined by comparing stable points in workdays and holidays. Finally, commuting trips are constructed for each user between home and workplace. These trips are multiplied by expansion factors based on the street population. Analysis results of this methodology are in good agreement with the pattern revealed by the 2014 Census population and the 2014 Person Trip Survey in Chongqing, China.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28