检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:TONG Chuan LIU Lei Daniel L.E.WATERS BAO Jin-song
机构地区:[1]Institute of Nuclear Agricultural Sciences,College of Agriculture and Biotechnology,Zhejiang University,Hangzhou 310029,China [2]Institute of Food Science,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China [3]Southern Cross Plant Science,Southern Cross University,Lismore,NSW 2480,Australia
出 处:《Rice science》2016年第6期287-296,共10页水稻科学(英文版)
基 金:financially supported by the Fundamental Research Funds for the Central Universities at Zhejiang University,Hangzhou,China(Grant No.2016XZZX001-09)
摘 要:Phospholipids are a major kind of lipids in rice grains and have fundamental nutritional andfunctional benefits to the plant. Their lyso forms (lysophospholipids, LPLs) often form inclusion complexeswith amylose or independently influence the physicochemical and functional properties of rice starch.However, the genetic basis for LPL synthesis in rice endosperm is largely unknown. Here, we performeda preliminary association test of 13 LPL compositions among 20 rice accessions, and identified 22putative main-effect quantitative trait loci responsible for all LPLs except for LPC14:0 and LPE14:0. Fivederived cleaved amplified polymorphic sequences and one insertion/deletion marker for threeLPL-synthesis-related candidate genes were developed. Association analysis revealed two markerssignificantly associated with starch LPL traits. These results provide an insight into the genetic basis ofphospholipid biosynthesis in rice and may contribute to the rice quality breeding programs usingfunctional markers.Phospholipids are a major kind of lipids in rice grains and have fundamental nutritional andfunctional benefits to the plant. Their lyso forms (lysophospholipids, LPLs) often form inclusion complexeswith amylose or independently influence the physicochemical and functional properties of rice starch.However, the genetic basis for LPL synthesis in rice endosperm is largely unknown. Here, we performeda preliminary association test of 13 LPL compositions among 20 rice accessions, and identified 22putative main-effect quantitative trait loci responsible for all LPLs except for LPC14:0 and LPE14:0. Fivederived cleaved amplified polymorphic sequences and one insertion/deletion marker for threeLPL-synthesis-related candidate genes were developed. Association analysis revealed two markerssignificantly associated with starch LPL traits. These results provide an insight into the genetic basis ofphospholipid biosynthesis in rice and may contribute to the rice quality breeding programs usingfunctional markers.
关 键 词:RICE starch lysophospholipid phospholipid biosynthesis grain quality QTL molecularmarker association mapping
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.137.108