检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:CHANG JING Li Yong
机构地区:[1]College of Information Technology,Jilin Agricultural University,Changchun,130118 [2]School of Mathematics,Jilin University,Changchun,130012 [3]不详
出 处:《Communications in Mathematical Research》2016年第4期289-302,共14页数学研究通讯(英文版)
基 金:The Science Research Plan(Jijiaokehezi[2016]166)of Jilin Province Education Department During the 13th Five-Year Period;the Science Research Starting Foundation(2015023)of Jilin Agricultural University
摘 要:In this paper, the Dirichlet boundary value problems of the nonlinear beam equation utt + △^2u + αu + εφ(t)(u + u^3) = 0 , α 〉 0 in the dimension one is considered, where u(t,x) and φ(t) are analytic quasi-periodic functions in t, and e is a small positive real-number parameter. It is proved that the above equation admits a small-amplitude quasi-periodic solution. The proof is based on an infinite dimensional KAM iteration procedure.In this paper, the Dirichlet boundary value problems of the nonlinear beam equation utt + △^2u + αu + εφ(t)(u + u^3) = 0 , α 〉 0 in the dimension one is considered, where u(t,x) and φ(t) are analytic quasi-periodic functions in t, and e is a small positive real-number parameter. It is proved that the above equation admits a small-amplitude quasi-periodic solution. The proof is based on an infinite dimensional KAM iteration procedure.
关 键 词:beam equation infinite dimension Hamiltonian system KAM theory REDUCIBILITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.213.54