On Reducibility of Beam Equation with Quasi-periodic Forcing Potential  

On Reducibility of Beam Equation with Quasi-periodic Forcing Potential

在线阅读下载全文

作  者:CHANG JING Li Yong 

机构地区:[1]College of Information Technology,Jilin Agricultural University,Changchun,130118 [2]School of Mathematics,Jilin University,Changchun,130012 [3]不详

出  处:《Communications in Mathematical Research》2016年第4期289-302,共14页数学研究通讯(英文版)

基  金:The Science Research Plan(Jijiaokehezi[2016]166)of Jilin Province Education Department During the 13th Five-Year Period;the Science Research Starting Foundation(2015023)of Jilin Agricultural University

摘  要:In this paper, the Dirichlet boundary value problems of the nonlinear beam equation utt + △^2u + αu + εφ(t)(u + u^3) = 0 , α 〉 0 in the dimension one is considered, where u(t,x) and φ(t) are analytic quasi-periodic functions in t, and e is a small positive real-number parameter. It is proved that the above equation admits a small-amplitude quasi-periodic solution. The proof is based on an infinite dimensional KAM iteration procedure.In this paper, the Dirichlet boundary value problems of the nonlinear beam equation utt + △^2u + αu + εφ(t)(u + u^3) = 0 , α 〉 0 in the dimension one is considered, where u(t,x) and φ(t) are analytic quasi-periodic functions in t, and e is a small positive real-number parameter. It is proved that the above equation admits a small-amplitude quasi-periodic solution. The proof is based on an infinite dimensional KAM iteration procedure.

关 键 词:beam equation infinite dimension Hamiltonian system KAM theory REDUCIBILITY 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象