检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:John Oluwagbemiga Oyekan Dongbing Gu Huosheng Ha
机构地区:[1]School of Aerospace, Transport and Manufacturing, Cranfield University, College Road, Cranfield, MK43 OAL, UK [2]School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
出 处:《Journal of Bionic Engineering》2016年第4期679-689,共11页仿生工程学报(英文版)
摘 要:Using a network of mobile sensors to track and map a dynamic spatio-temporal process in the environment is one of the current challenges in multi-agent systems. In this work, a distributed probabilistic multi-agent algorithm inspired by the bacte- rium foraging behavior is presented. The novelty of the algorithm lies in being capable of tracking and mapping a spa- tio-temporal quantity without the need of machine learning, estimation algorithms or future planning. This is unlike most current techniques that rely heavily on machine learning to estimate the distribution as well as the profile of spatio-temporal quantities. The experimental studies carried out in this work show that the algorithm works well by following the concentration gradient of a dynamic plume created under diffusive conditions. Furthermore, the algorithm is inherently capable of finding the source of a diffusive spatio-temporal quantity as well as performing environmental exploration. It is computationally tractable for simple agents, shown to adapt to its environment and can deal successfully with noise in sensor readings as well as in robot dynamics.Using a network of mobile sensors to track and map a dynamic spatio-temporal process in the environment is one of the current challenges in multi-agent systems. In this work, a distributed probabilistic multi-agent algorithm inspired by the bacte- rium foraging behavior is presented. The novelty of the algorithm lies in being capable of tracking and mapping a spa- tio-temporal quantity without the need of machine learning, estimation algorithms or future planning. This is unlike most current techniques that rely heavily on machine learning to estimate the distribution as well as the profile of spatio-temporal quantities. The experimental studies carried out in this work show that the algorithm works well by following the concentration gradient of a dynamic plume created under diffusive conditions. Furthermore, the algorithm is inherently capable of finding the source of a diffusive spatio-temporal quantity as well as performing environmental exploration. It is computationally tractable for simple agents, shown to adapt to its environment and can deal successfully with noise in sensor readings as well as in robot dynamics.
关 键 词:bioinspired algorithm artificial foraging swarm spatio-temporal mapping BACTERIUM
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249