载流圆板在磁场中的随机稳定性分析  

The Stochastic Stability of a Current Carrying Circular Plate in a Magnetic Field

在线阅读下载全文

作  者:王平[1,2] 张雄[1] 王知人[3,2] 

机构地区:[1]燕山大学建筑工程与力学学院,河北秦皇岛066004 [2]中国科学院力学研究所国家非线性力学重点实验室(LNM),北京100080 [3]燕山大学理学院,河北秦皇岛066004

出  处:《力学季刊》2016年第3期493-501,共9页Chinese Quarterly of Mechanics

基  金:国家自然科学基金(51174175);河北省自然科学基金(A2012203140)

摘  要:本文根据大挠度板壳力学基础理论和电磁弹性力学理论,建立了载流圆板的非线性磁弹性随机振动力学模型,采用伽辽金变分法将其变换成非线性常微分动力学方程.通过拟不可积哈密顿系统的平均理论将该方程等价为一个一维伊藤随机微分方程.通过计算该方程的最大Lyapunov指数判断该系统的局部随机稳定性,并进一步采用基于随机扩散过程的奇异边界理论判断该系统的全局稳定性.最后通过讨论该系统的稳态概率密度函数图的形状变化讨论了该动力系统的随机Hopf分岔的变化规律,并采用数值模拟对理论分析进行了验证.According to the theories of the elasticity with large deflection and the magnetic elasticity, the nonlinear magneto-elastic random vibration model of a current carrying circular plate was established. Then the nonlinear ordinary differential dynamic equation was derived using the Galerkin’s variation method. The equation was equivalent to a one dimensional Ito stochastic differential equation through the average theory method of quasi non integrable Hamiltonian systems. The stochastic local stability of the system was determined by calculating the largest Lyapunov exponent of the equation. The global stability of the system was determined using the theory of singular boundary based on stochastic diffusion process. Finally, the stochastic Hopf bifurcation of the system was discussed through the shape change of the steady-state probability density function diagram of the system. And the theoretical analysis is verified by numerical simulation.

关 键 词:圆薄板 磁弹性 稳定性 随机Hopf分岔 

分 类 号:O342[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象