检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学建筑工程与力学学院,河北秦皇岛066004 [2]中国科学院力学研究所国家非线性力学重点实验室(LNM),北京100080 [3]燕山大学理学院,河北秦皇岛066004
出 处:《力学季刊》2016年第3期493-501,共9页Chinese Quarterly of Mechanics
基 金:国家自然科学基金(51174175);河北省自然科学基金(A2012203140)
摘 要:本文根据大挠度板壳力学基础理论和电磁弹性力学理论,建立了载流圆板的非线性磁弹性随机振动力学模型,采用伽辽金变分法将其变换成非线性常微分动力学方程.通过拟不可积哈密顿系统的平均理论将该方程等价为一个一维伊藤随机微分方程.通过计算该方程的最大Lyapunov指数判断该系统的局部随机稳定性,并进一步采用基于随机扩散过程的奇异边界理论判断该系统的全局稳定性.最后通过讨论该系统的稳态概率密度函数图的形状变化讨论了该动力系统的随机Hopf分岔的变化规律,并采用数值模拟对理论分析进行了验证.According to the theories of the elasticity with large deflection and the magnetic elasticity, the nonlinear magneto-elastic random vibration model of a current carrying circular plate was established. Then the nonlinear ordinary differential dynamic equation was derived using the Galerkin’s variation method. The equation was equivalent to a one dimensional Ito stochastic differential equation through the average theory method of quasi non integrable Hamiltonian systems. The stochastic local stability of the system was determined by calculating the largest Lyapunov exponent of the equation. The global stability of the system was determined using the theory of singular boundary based on stochastic diffusion process. Finally, the stochastic Hopf bifurcation of the system was discussed through the shape change of the steady-state probability density function diagram of the system. And the theoretical analysis is verified by numerical simulation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.137.145