检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Science China(Information Sciences)》2016年第11期29-48,共20页中国科学(信息科学)(英文版)
基 金:supported by National Natural Science Foundation of China (Grant No. 61333008);National Key Basic Research Program and Development Program of China (973) (Grant No. 2013CB733100)
摘 要:A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of high- order nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method.A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of high- order nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method.
关 键 词:characteristic model characteristic model-based adaptive control (CMAC) consistency condition stability high-order nonlinear system
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229