运用备份服务位置和概率QoS模型的Web服务组合算法  被引量:1

Web services composition algorithm based on the location of backup service and probabilistic QoS model

在线阅读下载全文

作  者:文华[1] 

机构地区:[1]新疆交通职业技术学院,新疆乌鲁木齐831401

出  处:《电信科学》2016年第10期116-123,共8页Telecommunications Science

摘  要:针对工作流服务数的增加过程中最初规划的潜在成本较高以及很多服务组合算法可靠性不足等问题,提出了一种利用备份服务位置和概率服务质量(QoS)模型的服务组合算法。该算法计算服务集群的QoS优化选择,为每个服务包含足够数量的备份服务,且考虑了备份服务位置,以便在单个故障点上进行评估。由于这些备份服务分布均匀,防止了任务失败的发生。对于服务选择问题,采用一种改进的多目标优化(MOO)算法,利用聚类和QoS模型来计算可行解集合。仿真实验采用JMETAL 3.1框架,评估备份服务位置的收益以及算法的可靠性。结果表明,相比于其他MOO算法,提出的算法可靠性更高,从备份服务位置所获得的收益更高。In the process of increasing the number of work-flow services, as the potential cost of the initial planning is high, and the reliability of many service composition algorithms is not enough. A service composition algorithm based on the location of backup service and probabilistic quality-of-service(QoS) model was proposed. A service cluster based QoS optimization selection for each service was computed which contained a sufficient number of backup services. The location of backup service was considered to be evaluated at failure of a single point. Because the backup service was distributed evenly, the occurrence of the failure of the task was presented. For the service selection problem, an improved multiple objective optimization(MOO) algorithm was adopted to calculate the feasible solution set using clustering and QoS model. JMETAL 3.1 framework was used to assess the returns of the backup service location and the reliability of the algorithms. The results show that compared to other MOO algorithms, the proposed algorithm is more reliable and the gain from the backup service position is higher.

关 键 词:工作流 服务组合 概率服务质量 多目标优化 聚类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象