检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘丽萍[1] 王紫萍[1] LIU Li-ping WANG Zi-ping(School of Mathematics and Statistics, Guihou University of Finance and Economics, Guiyang 550025, Chin)
机构地区:[1]贵州财经大学数学与统计学院,贵州贵阳550025
出 处:《数学的实践与认识》2016年第20期1-9,共9页Mathematics in Practice and Theory
基 金:贵州省教育厅2015年度普通本科高校自然科学研究项目(黔教合KY字[2015]423);2015年全国统计科学研究项目(2015LY19);国家社会科学基金(16CTJ013)
摘 要:大维数据给传统的协方差阵估计方法带来了巨大的挑战,数据维度和噪声的影响不容忽视.首先以风险因子为自变量,对股票收益率建立线性回归模型;然后通过引入惩罚函数将取值非常接近的回归系数归为一组,近而来估计大维数据的协方差阵,提出了基于回归聚类算法的分块模型(BM-CAR),模型克服了传统的稀疏协方差阵估计的弊端.通过模拟和实证研究发现:较因子协方差阵估计方法而言,BM-CAR明显提高了大维协方差阵的估计效率;并且将其应用在投资组合时,投资者获得了更高的收益和经济福利.High dimensional data poses great challenges to the traditional estimation of covariance;we can't ignore the influence of data dimension and noise.In this paper,we firstly use risk factors as independent variables,and establish a linear regression model of stock returns.Then by introducing the penalty function,we will merge into a set of regression coefficients that are very close,to estimate the covariance matrix of large dimensional data.The BM-CAR is proposed which is based on the clustering algorithm in regression.The model overcomes the disadvantages of traditional sparse covariance matrix.Through simulation and empirical studies,it is found that BM-CAR significantly improves the efficiency of estimation and prediction of large matrix and investors obtain higher returns and economical welfare when the BM-CAR model is applied in portfolio.
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.230.40