一种双正交消隐点的双目相机标定方法  被引量:10

Binocular self calibration using two pairs of orthogonal vanishing points

在线阅读下载全文

作  者:赵亚凤[1] 胡峻峰[1] ZHAO Ya-feng HU Jun-feng(College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040 , China)

机构地区:[1]东北林业大学机电工程学院,黑龙江哈尔滨150040

出  处:《液晶与显示》2016年第10期958-966,共9页Chinese Journal of Liquid Crystals and Displays

基  金:中央高校基本科研业务费资助项目(No.2572015BB11);黑龙江省青年基金(No.QC2015080)~~

摘  要:为了保证双目相机标定精度的同时,提高算法速度。利用田字形模板中的两对正交消隐点,拍摄两幅图像,实现快速标定。首先,提出了消隐点寻优的方法来提取每幅图像中误差最小的两对正交消隐点,线性计算相机主点和归一化焦距,作为内参数的初值。再根据同一幅图像消隐点共线和所有直线畸变后也为直线的原则,构建约束函数,利用优化的差分进化算法进行全局寻优,完成相机畸变校正。最后,根据优化后消隐点坐标求得左右相机的旋转矩阵,并结合左右相机的角点世界坐标,利用刚性变换求得平移向量。双目标定的平均重构误差为0.598pixel,跟传统方法标定误差相当。该标定算法重构误差与传统算法在一个级别,能满足标定中稳定可靠、精度高、抗干扰能力强等要求。In order to realize fast and accurate binocular calibration,two pairs of orthogonal vanishing points product from square template were used.This method requires only two images.Firstly,two pairs of orthogonal vanishing point were extracted from each image;secondly,winner point and focal length on each single camera were solved by linear algorithm;thirdly,considering the radial lens distortion,distortion correction was implemented by linear constraints.During this process,the optimization differential evolution algorithm was proposed.Parameters within the solution were set as initial value.Line collinear features were set as constrained optimization parameters.According to the coordinates of 4 vanishing point,by using the infinite homography matrix rotation orthogonal constraint,the initial values of the rotation matrix can be obtained and more accurately calculated rotation matrix can be obtained by the iterative method.Experimental results indicate that the reconstruction error is 0.598 pixel.The experimental results show that the calibration method can meet the precision require-ments,and it is stable and reliable,high precision and strong robustness for self calibration.

关 键 词:消隐点 标定 内参数 畸变校正 外参数 

分 类 号:TP394.1[自动化与计算机技术—计算机应用技术] TH691.9[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象