结合MSER与HSOG的目标局部特征提取  被引量:3

Target local feature extraction combined MSER and HSOG

在线阅读下载全文

作  者:郭汉洲[1,2] 郭立红[1] 吕游[1,2] 

机构地区:[1]中国科学院长春光学精密机械与物理研究所,吉林长春130033 [2]中国科学院大学,北京100049

出  处:《液晶与显示》2016年第11期1070-1078,共9页Chinese Journal of Liquid Crystals and Displays

基  金:国家自然科学基金(No.61036015)~~

摘  要:针对SIFT在视点变化下对物体几何特征描述的缺陷,本文提出一种结合最稳极值区域检测和改进的二阶梯度直方图描述子的目标局部特征提取方法。首先,采用一种新的最稳定度判断准则,提高了不规则形状区域和模糊条件下的检测效果;然后,利用改进的二阶梯度直方图提取MSER区域的局部特征描述子,采用高斯函数加权的方法考虑了不同像素对区域中心像素的影响,提高了稳定性;最后,通过标准测试图像和实际拍摄图像的匹配对算法进行验证。实验结果表明,本文方法在视点变化下仍能获得70%以上的匹配率,匹配效果优于SIFT。本文方法相比于传统方法检测效果更为稳定,对于不规则形状区域仍有较好的检测效果,适用于视点变化下的目标匹配。For the defect in describing object geometry features of SIFT at viewpoint variation,a new local feature extraction method is proposed in this paper,which combined maximally stable extremal region(MSER)and histogram of second order gradient(HSOG).First,a new most stability criterion is adopted to improve the detection effect at irregular shaped regions and under blur conditions.Then,the local feature descriptors of MSER is extracted by the improved histogram of second-order gradient;the influences of different pixels on central pixel of MESR region are considered by weighted Gaussian function method and the stability is improved.Finally,the method proposed is verified through image match with standard test images and real images.Experimental results show that the method proposed can still achieve more than 70% matching rate at different viewpoint,which is better than SIFT.Compared with the traditional method,the presented method achieves an excellent detection effect for irregularly shaped areas,which is suitable for target matching when viewpoint is current.

关 键 词:信息处理技术 MSER+HSOG 图像匹配局部特征 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象