PTOX Mediates Novel Pathways of Electron rransport in Etioplasts of Arabidopsis  被引量:3

PTOX Mediates Novel Pathways of Electron rransport in Etioplasts of Arabidopsis

在线阅读下载全文

作  者:Sekhar Kambakam Ujjal Bhattacharjee Jacob Petrich Steve Rodermel 

机构地区:[1]Department of Genetics, Development and Cell Biology, iowa State University, 445 Bessey Hall, Ames, IA 50011, USA [2]Department of Chemistry, Iowa State University, Ames, IA 50011, USA

出  处:《Molecular Plant》2016年第9期1240-1259,共20页分子植物(英文版)

摘  要:The immutans (im) variegation mutant of Arabidopsis defines the gene for PTOX (plastid terminal oxidase), a versatile plastoquinol oxidase in chloroplast membranes. In this report we used im to gain insight into the function of PTOX in etioplasts of dark-grown seedlings. We discovered that PTOX helps control the redox state of the plastoquinone (PQ) pool in these organelles, and that it plays an essential role in etioplast metabolism by participating in the desaturation reactions of carotenogenesis and in one or more redox pathways mediated by PGR5 (PROTON GRADIENT REGULATION 5) and NDH (NAD(P)H dehydrogenase), both of which are central players in cyclic electron transport. We propose that these elements couple PTOX with electron flow from NAD(P)H to oxygen, and by analogy to chlororespiration (in chloroplasts) and chromorespiration (in chromoplasts), we suggest that they define a respiratory process in etioplasts that we have termed "etiorespiration". We further show that the redox state of the PQ pool in etioplasts might control chlorophyll biosynthesis, perhaps by participating in mechanisms of retrograde (plastid- to-nucleus) signaling that coordinate biosynthetic and photoprotective activities required to poise the etioplast for light development. We conclude that PTOX is an important component of metabolism and redox sensing in etioplasts.The immutans (im) variegation mutant of Arabidopsis defines the gene for PTOX (plastid terminal oxidase), a versatile plastoquinol oxidase in chloroplast membranes. In this report we used im to gain insight into the function of PTOX in etioplasts of dark-grown seedlings. We discovered that PTOX helps control the redox state of the plastoquinone (PQ) pool in these organelles, and that it plays an essential role in etioplast metabolism by participating in the desaturation reactions of carotenogenesis and in one or more redox pathways mediated by PGR5 (PROTON GRADIENT REGULATION 5) and NDH (NAD(P)H dehydrogenase), both of which are central players in cyclic electron transport. We propose that these elements couple PTOX with electron flow from NAD(P)H to oxygen, and by analogy to chlororespiration (in chloroplasts) and chromorespiration (in chromoplasts), we suggest that they define a respiratory process in etioplasts that we have termed "etiorespiration". We further show that the redox state of the PQ pool in etioplasts might control chlorophyll biosynthesis, perhaps by participating in mechanisms of retrograde (plastid- to-nucleus) signaling that coordinate biosynthetic and photoprotective activities required to poise the etioplast for light development. We conclude that PTOX is an important component of metabolism and redox sensing in etioplasts.

关 键 词:immutans PTOX etiorespiration PHYTOENE prochlorophyllide retrograde singnaling 

分 类 号:Q94[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象