检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]第二炮兵工程大学,西安710025
出 处:《兵器装备工程学报》2016年第10期142-146,共5页Journal of Ordnance Equipment Engineering
摘 要:面向装备维修资源保障任务,首先采用粗糙集理论,通过属性约简算法,简化装备维修备件资源消耗影响因素,在此基础上利用灰色预测模型,对基于虚拟仓储的装备维修资源需求进行预测,通过与单一的灰色预测方法结果相比较,将粗糙集与灰色预测模型相融合的方法应用于装备维修备件资源预测的结果可靠、信息准确,并且预测值与实用值的相对误差和绝对误差很小,达到了准确预测的效果;从而验证了此模型与算法的有效性,为信息化战争中提高装备维修备件资源保障功能提供理论与方法支持。Faced to the assignment of equipment maintenance support resources,firstly,we adopted the rough set theory and simplified equipment maintenance spare parts resource consumption influence factors through attribute reduction algorithms,and on the basis of using grey prediction model,the demand for equipment maintenance based on virtual storage resources was forecasted,and compared with the results of single grey prediction method,the method of combining the rough sets and grey forecasting model of applied in equipment maintenance spare parts resources prediction result is reliable,and is accurate information,and the predicted value and the practical value of relative error and absolute error is very small,which achieved the effect of accurate prediction. As a result,this model and algorithum were proved to be effective to provide theoretical and practical support for equipment maintenance spare resources in information warfare.
分 类 号:TP315[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3