Optimizing Cr^(3+) concentration and evaluating energy transfer from Cr^(3+) to Nd^(3+) in Cr,Nd:GGG nanocrystals prepared by sol-gel method  被引量:1

Optimizing Cr^(3+) concentration and evaluating energy transfer from Cr^(3+) to Nd^(3+) in Cr,Nd:GGG nanocrystals prepared by sol-gel method

在线阅读下载全文

作  者:Yassin Alshikh Mohamad Yomen Atassi Zafer Moussa 

机构地区:[1]Department of Applied Physics,Higher Institute for Applied Science and Technology

出  处:《Journal of Rare Earths》2016年第11期1077-1082,共6页稀土学报(英文版)

摘  要:Nanopowder of Cr:GGG and nanopowder of Cr,Nd:GGG with different concentrations of Cr3+ ranging from 0.1 at.% to 1.5 at.% were synthesized by the sol-gel method using acetic acid and ethylene glycol. Thermal gravimetric analysis and differential scanning calorimetry (TGA-DSC), X-ray diffraction (XRD) and photoluminescence spectroscopy were used to characterize the powder. The crystallite size was about 58 nm when treated at 1000 oC for 2 h. Cr3+ photoluminescence spectrum in GGG showed a broad band emission around 730 nm. The intensity of this band decreased when co-doped with Nd, indicating an efficient energy transfer from Cr3+ to Nd3+. Photoluminescence intensity of Nd in Cr,Nd:GGG at 1.06μm showed that the optimum concentration of Cr3+ was about 1 at.% (more or less) for 1 at.% Nd3+. This result was also confirmed by chromium fluorescence decay rate analysis. Energy transfer efficiency was found to be about 84% for 1 at.% concentration of each chromium and neodymium.Nanopowder of Cr:GGG and nanopowder of Cr,Nd:GGG with different concentrations of Cr3+ ranging from 0.1 at.% to 1.5 at.% were synthesized by the sol-gel method using acetic acid and ethylene glycol. Thermal gravimetric analysis and differential scanning calorimetry (TGA-DSC), X-ray diffraction (XRD) and photoluminescence spectroscopy were used to characterize the powder. The crystallite size was about 58 nm when treated at 1000 oC for 2 h. Cr3+ photoluminescence spectrum in GGG showed a broad band emission around 730 nm. The intensity of this band decreased when co-doped with Nd, indicating an efficient energy transfer from Cr3+ to Nd3+. Photoluminescence intensity of Nd in Cr,Nd:GGG at 1.06μm showed that the optimum concentration of Cr3+ was about 1 at.% (more or less) for 1 at.% Nd3+. This result was also confirmed by chromium fluorescence decay rate analysis. Energy transfer efficiency was found to be about 84% for 1 at.% concentration of each chromium and neodymium.

关 键 词:NANOPOWDER Cr Nd:GGG sol-gel fluorescence lifetime energy transfer efficiency rare earths 

分 类 号:TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象