Cox比例风险回归模型C统计量的计算方法及其SAS实现  被引量:1

Calculation of C statistics for the Cox proportional hazards regression models and its implementation in SAS

在线阅读下载全文

作  者:严若华[1] 李卫[1] 谷鸿秋[1] 王杨[1] 

机构地区:[1]中国医学科学院北京协和医学院国家心血管病中心阜外医院心血管疾病国家重点实验室医学统计部,北京100037

出  处:《中华疾病控制杂志》2016年第9期953-956,961,共5页Chinese Journal of Disease Control & Prevention

摘  要:目的 C统计量是评价Cox比例风险回归模型区分度的常见指标,然而,目前对C统计量的算法仍存在争议。本文将探讨C统计量的计算方法及其SAS实现,为编程输出Cox模型的C统计量提供参考。方法 运用PHREG过程估计研究观察期末的累积生存概率,判断实际生存时间与预期生存函数是否同趋势,并以此计算C统计量及其95%置信区间。以某注册登记研究为例,评价年龄、血压和心率对急性心衰患者出院后30d死亡率的预测区分度。结果 研究共纳入2836例急性心衰患者,年龄、基线收缩压和基线心率对出院后30d死亡的影响差异都具有统计学意义(均有P〈0.05),其中年龄(单位:岁;风险比(hazardratio,HR):1.029;95%置信区间(confi-denceinterval,CI):1.022~1.037)和心率(单位:次/分;HR:1.011;95%CI:1.007~1.014)为危险因素,收缩压(单位:mmHg;HR:0.992;95%CI:0.989~0.995)为保护因素。模型C统计量达到0.638(95%CI:0.570~0.704),可见模型具有一定的区分度,使用SAS程序能够得到所需结果。结论 C统计量是评价模型区分度的良好手段,并可以通过SAS程序求得。Objective C statistics is one of the most widely-used indexes in accessing the discrimination of the Cox proportional hazards regression models. However, the calculation methods for C statistics have been controversial. Our study aims to investigate the calculation of C statistics and its implementation in SAS. Methods To calculate C statistics and its 95% confidence interval ( CI), we used PROC PHREG to predict the survival function, and decided whether the predicted survival probabilities was consistent with the actual survival times. Taking a registry study as an example, we e- valuated the discrimination of a Cox regression model which predicted the 30-day mortality after discharge in patients with a- cute heart failure. Results A total of 2 836 patients were included in the final analysis. Older age ( Unit: years; hazard ratio (HR) : 1. 029; 95% CI: 1. 022-1. 037), lower systolic blood pressure ( Unit: mmHg; HR: 0, 992; 95 % CI: 0. 989- 0. 995) and increased pulse rate ( Unit: beats/min; HR: 1.011 ; 95% CI: 1. 007-1. 014) were all statistically significant predictors for 30-day post-discharge death. The C statistics of the model was 0. 638 (95% CI: 0. 570-0. 704), indicating a certain degree of discrimination. Conclusions C statistics is a good index for accessing the discrimination of Cox regres- sion models, and it can be calculated by SAS programs.

关 键 词:统计学 非参数 模型 统计学 流行病学方法 

分 类 号:R195.1[医药卫生—卫生统计学] R181[医药卫生—卫生事业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象