基于稀疏补分析模型的近似最优子空间追踪  

Approximately Optimal Subspace Pursuit Based on Cosparse Analysis Model

在线阅读下载全文

作  者:张宗念[1] 李金徽[2] 黄仁泰[3] 闫敬文[4] 

机构地区:[1]东莞理工学院电子工程学院,广东东莞523808 [2]东莞理工学院网络中心,广东东莞523808 [3]东莞理工学院计算机学院,广东东莞523808 [4]汕头大学电子工程系,广东汕头515063

出  处:《电子学报》2016年第10期2289-2293,共5页Acta Electronica Sinica

基  金:国家自然科学基金(No.40971206);广东省自然科学基金(No.2015A030313654)

摘  要:为了从含噪声的测量矢量中重构原始信号,研究了稀疏补分析模型下近似最优子空间追踪信号重构算法.针对直接采用稀疏综合模型下子空间追踪过程非最速梯度下降和信号重构概率不高的缺点,根据稀疏补分析模型下不同类型分析字典的结构特点来设计近似目标优化函数;改进了迭代追踪过程;优化了稀疏补取值方法;提出并实现了基于稀疏补分析模型的近似最优分析子空间追踪算法.仿真实验证明,当稀疏补运算符分别采用随机紧支框架和二维全变分矩阵时,算法的完全重构信号概率均明显高于ASP、AHTP、AIHT、AL1、GAP算法的完全重构信号概率;对于含高斯噪声的输入信号,算法的重构信号综合平均PSNR比相应的ASP、AHTP、AIHT算法分别提高了0.8d B、1.38d B、3.13 d B,但比GAP和AL1算法降低了0.32 d B和0.6d B.算法的完全重构概率与综合重构性能有了明显提高,收敛充分条件得到进一步简化.An approximately optimal subspace pursuit algorithm under cosparse analysis model was studied to reconstruct the original signal from the noisy measurement vectors. To overcome the drawbacks of the non steepest gradient during the pursuit process and the lowsuccessful reconstruction probability for sparse synthesis model,an approximately optimal subspace pursuit algorithm based on cosparse analysis model was presented and realized. The approximately optimal optimization object function for the algorithm was designed according to the structure of the different analysis dictionaries,the iterative pursuit process of the algorithm was revised,and the methods of selecting cosparsity was optimized. The simulation experiments showthat the complete reconstruction probability of the newalgorithm is evidently larger than that of the algorithm for ASP,AHTP,AIHT,AL1 and GAP when the cosparse operator is a random compact frame or a two dimension total variant matrix.The comprehensive average PSNR of the output signal for the newalgorithm is larger than that of the algorithm of ASP,AHTP,and AIHT for 0. 8d B,1. 38 d B and 3. 13 d B respectively and is less than that of the algorithm of GAP and AL1 for 0. 32 d B and 0. 6d B when the input signal is with Gaussion noise. The complete reconstruction probability of the newalgorithm was greatly improved by adopting the above measures,and the convergence condition for the newalgorithm was simplified.

关 键 词:稀疏补分析模型 近似最优 子空间 追踪 

分 类 号:TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象