检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江西师范大学数学与信息科学学院,江西南昌330022
出 处:《计算机与现代化》2016年第11期114-117,121,共5页Computer and Modernization
摘 要:Memetic算法是一种启发式搜索方法,常用于解决一些NP问题。本文通过对遗传Memetic算法的改进与优化,结合智能组卷问题的特点,提出一套完整的解决方案。算法使用Memetic算法框架,全局搜索策略采用分段实数编码的遗传算法,融合了算法的交叉变异操作,局部搜索策略采用模拟退火算法,有效解决陷入局部最优问题。通过不同算法的对比实验表明,本文提出的Memetic算法能够快速高效地解决智能组卷问题,大大提升试卷生成质量,减少迭代次数,可快速获得最优解。Memetic algorithm is a metaheuristic search method. It is often used to solve NP problems. In this paper, through the improvement and optimization of the genetic Memetic algorithm, combined with the characteristics of the intelligent test paper gen- eration, a set of complete solution is put forward. The algorithm uses the Memetic algorithm framework; the global search strategy uses genetic algorithm of piecewise real number encoding; crossover and mutation operations are included in. The local search strategy algorithm using simulated annealing algorithm, solves the local optimization problem effectively. Through the comparison experiment of different algorithms, the experimental results show that the Memetic algorithm proposed in this paper can solve the problem of generating test paper quickly and efficiently, at the same time, the algorithm can improve the quality of test paper, and also can reduce the number of iterations and obtain the optimal solution more quickly.
关 键 词:智能组卷 MEMETIC算法 遗传算法 模拟退火算法
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171